1、2010年普通高等学校招生全国统一考试(浙江卷)数学(文科)一、选择题(共10小题,每小题5分,满分50分)1、(2010浙江)设P=x|x1,Q=x|x24,则PQ()A、x|1x2B、x|3x1C、x|1x4D、x|2x12、(2010浙江)已知函数f(x)=log2(x+1),若f()=1,=()A、0B、1C、2D、33、(2010浙江)设i为虚数单位,则5i1+i=()A、23iB、2+3iC、23iD、2+3i4、(2010浙江)某程序框图如图所示,若输出的S=57,则判断框内位()A、k4B、k5C、k6D、k75、(2010浙江)设sn为等比数列an的前n项和,8a2+a5=0
2、则S5S2=()A、11B、8C、5D、116、(2010浙江)设0x2,则“x sin2x1”是“x sinx1”的()A、充分而不必要条件B、必要而不充分条件C、充分必要条件D、既不充分也不必要条件7、(2010浙江)若实数x,y满足不等式组合&x+3y30&2xy30.&xy+10.则x+y的最大值为()A、9B、157C、1D、7158、(2010浙江)一个空间几何体的三视图及其尺寸如下图所示,则该空间几何体的体积是()A、73B、143C、7D、149、(2010浙江)已知x0是函数f(x)=2x+11x的一个零点若x1(1,x0),x2(x0,+),则()A、f(x1)0,f(x2
3、)0B、f(x1)0,f(x2)0C、f(x1)0,f(x2)0D、f(x1)0,f(x2)010、(2010浙江)设O为坐标原点,F1,F2是双曲线x2a2y2b2=1(a0,b0)的焦点,若在双曲线上存在点P,满足F1PF2=60,|OP|=7a,则该双曲线的渐近线方程为()A、x3y=0B、3xy=0C、x2y=0D、2xy=0二、填空题(共7小题,每小4分,满分28分)11、(2010浙江)在如图所示的茎叶图中,甲、乙两组数据的中位数分别是_12、(2010浙江)函数f(x)=sin(2x4)22sin2x的最小正周期是_13、(2010浙江)已知平面向量,|=1,|=2,(2),则|
4、2a+|的值是_14、(2010浙江)在如下数表中,已知每行、每列中的树都成等差数列,那么,位于下表中的第n行第n+1列的数是_第1列第2列第3列第1行123第2行246第3行36915、(2010浙江)若正实数X,Y满足2X+Y+6=XY,则XY的最小值是_16、(2010浙江)某商家一月份至五月份累计销售额达3860万元,预测六月份销售额为500万元,七月份销售额比六月份递增x%,八月份销售额比七月份递增x%,九、十月份销售总额与七、八月份销售总额相等,若一月至十月份销售总额至少至少达7000万元,则,x的最小值_17、(2010浙江)在平行四边形ABCD中,O是AC与BD的交点,P、Q、
5、M、N分别是线段OA、OB、OC、OD的中点,在APMC中任取一点记为E,在B、Q、N、D中任取一点记为F,设G为满足向量OG=OE+OF的点,则在上述的点G组成的集合中的点,落在平行四边形ABCD外(不含边界)的概率为_三、解答题(共5小题,满分72分)18、(2010浙江)在ABC中,角A,B,C所对的边分别为a,b,c,设S为ABC的面积,满足S=34(a2+b2c2)()求角C的大小;()求sinA+sinB的最大值19、(2010浙江)设a1,d为实数,首项为a1,公差为d的等差数列an的前n项和为Sn,满足S5S6+15=0()若S5=5,求S6及a1;()求d的取值范围20、(2
6、010浙江)如图,在平行四边形ABCD中,AB=2BC,ABC=120E为线段AB的中点,将ADE沿直线DE翻折成ADE,使平面ADE平面BCD,F为线段AC的中点()求证:BF平面ADE;()设M为线段DE的中点,求直线FM与平面ADE所成角的余弦值21、(2010浙江)已知函数f(x)=(xa)2(xb)(a,bR,ab)(I)当a=1,b=2时,求曲线y=f(x)在点(2,f(x)处的切线方程;(II)设x1,x2是f(x)的两个极值点,x3是f(x)的一个零点,且x3x1,x3x2证明:存在实数x4,使得x1,x2,x3,x4按某种顺序排列后的等差数列,并求x422、(2010浙江)已知m是非零实数,抛物线C:y2=2px(p0)的焦点F在直线l:xmym22=0上(I)若m=2,求抛物线C的方程(II)设直线l与抛物线C交于A、B,AA2F,BB1F的重心分别为G,H,求证:对任意非零实数m,抛物线C的准线与x轴的焦点在以线段GH为直径的圆外