资源描述
2015年广东省高考数学试卷(文科)
一、选择题(共10小题,每小题5分,满分50分)2015年普通高等学校招生全国统一考试(广东卷)数学(文科)
1.(5分)(2015•广东)若集合M={﹣1,1},N={﹣2,1,0}则M∩N=( )
A.{0.﹣1} B.{0} C.{1} D.{﹣1,1}
2.(5分)(2015•广东)已知i是虚数单位,则复数(1+i)2=( )
A.2i B.﹣2i C.2 D.﹣2
3.(5分)(2015•广东)下列函数中,既不是奇函数,也不是偶函数的是( )
A.y=x+sin2x B.y=x2﹣cosx C.y=2x+ D.y=x2+sinx
4.(5分)(2015•广东)若变量x,y满足约束条件,则z=2x+3y的最大值为( )
A.2 B.5 C.8 D.10
5.(5分)(2015•广东)设△ABC的内角A,B,C的对边分别为a,b,c.若a=2,c=2,cosA=.且b<c,则b=( )
A.3 B.2 C.2 D.
6.(5分)(2015•广东)若直线 l1和l2 是异面直线,l1在平面 α内,l2在平面β内,l是平面α与平面β的交线,则下列命题正确的是( )
A.l与l1,l2都不相交 B.l与l1,l2都相交
C.l至多与l1,l2中的一条相交 D.l至少与l1,l2中的一条相交
7.(5分)(2015•广东)已知5件产品中有2件次品,其余为合格品.现从这5件产品中任取2件,恰有一件次品的概率为( )
A.0.4 B.0.6 C.0.8 D.1
8.(5分)(2015•广东)已知椭圆+=1(m>0 )的左焦点为F1(﹣4,0),则m=( )
A.2 B.3 C.4 D.9
9.(5分)(2015•广东)在平面直角坐标系xOy中,已知四边形 ABCD是平行四边形,=(1,﹣2),=(2,1)则•=( )
A.5 B.4 C.3 D.2
10.(5分)(2015•广东)若集合E={(p,q,r,s)|0≤p<s≤4,0≤q<s≤4,0≤r<s≤4且p,q,r,s∈N},F={(t,u,v,w)|0≤t<u≤4,0≤v<w≤4且t,u,v,w∈N},用card(X)表示集合X中的元素个数,则 card(E)+card(F)=( )
A.200 B.150 C.100 D.50
二、填空题(共3小题,考生作答4小题,每小题5分,满分15分)(一)必做题(11~13题)
11.(5分)(2015•广东)不等式﹣x2﹣3x+4>0的解集为 .(用区间表示)
12.(5分)(2015•广东)已知样本数据 x1,x2,…,xn的均值=5,则样本数据 2x1+1,2x2+1,…,2xn+1 的均值为 .
13.(5分)(2015•广东)若三个正数 a,b,c 成等比数列,其中a=5+2,c=5﹣2,则 b= .
坐标系与参数方程选做题
14.(5分)(2015•广东)在平面直角坐标系xOy中,以原点O为极点,x轴的正半轴为极轴建立极坐标系.曲线C1的极坐标方程为ρ(cosθ+sinθ)=﹣2,曲线C2的参数方程为 (t为参数),则C1与C2交点的直角坐标为 .
几何证明选讲选做题
15.(2015•广东)如图,AB为圆O的直径,E为AB 的延长线上一点,过E作圆O的切线,切点为C,过A作直线EC的垂线,垂足为D.若AB=4.CE=2,则 AD= .
三、解答题(共6小题,满分80分)
16.(12分)(2015•广东)已知 tanα=2.
(1)求tan(α+)的值;
(2)求 的值.
17.(12分)(2015•广东)某城市100户居民的月平均用电量(单位:度),以[160,180),[180,200),[200,220),[220.240),[240,260),[260,280),[280,300)分组的频率分布直方图如图.
(1)求直方图中x的值;
(2)求月平均用电量的众数和中位数;
(3)在月平均用电量为,[220,240),[240,260),[260,280),[280,300)的四组用户中,用分层抽样的方法抽取11户居民,则月平均用电量在[220,240)的用户中应抽取多少户?
18.(14分)(2015•广东)如图,三角形PDC所在的平面与长方形ABCD所在的平面垂直,PD=PC=4,AB=6,BC=3.
(1)证明:BC∥平面PDA;
(2)证明:BC⊥PD;
(3)求点C 到平面PDA的距离.
19.(14分)(2015•广东)设数列 {an}的前n项和为Sn,n∈N*.已知a1=1,a2=,a3=,且当n≥2时,4Sn+2+5Sn=8Sn+1+Sn﹣1.
(1)求a4的值;
(2)证明:{an+1﹣an}为等比数列;
(3)求数列{an}的通项公式.
20.(14分)(2015•广东)已知过原点的动直线l与圆C1:x2+y2﹣6x+5=0相交于不同的两点A,B.
(1)求圆C1的圆心坐标;
(2)求线段AB 的中点M的轨迹C的方程;
(3)是否存在实数 k,使得直线L:y=k(x﹣4)与曲线 C只有一个交点?若存在,求出k的取值范围;若不存在,说明理由.
21.(14分)(2015•广东)设 a为实数,函数 f(x)=(x﹣a)2+|x﹣a|﹣a(a﹣1).
(1)若f(0)≤1,求a的取值范围;
(2)讨论 f(x)的单调性;
(3)当a≥2 时,讨论f(x)+ 在区间 (0,+∞)内的零点个数.
第2页(共2页)
展开阅读全文