1、百分数 一、知识要点1、百分数的意义:表示一个数是另一个数的百分之几。百分数是指的两个数的比,因此也叫百分率或百分比。百分数通常不写成分数形式,而采用百分号“%”,百分数后面不能带单位名称。2、百分数和分数的主要联系与区别(1)联系:都可以表示两个量的倍比关系。(2)区别:、意义不同:百分数只表示两个数的倍比关系,不能表示具体的数量,所以不能带单位;分数既可以表示具体的数,又可以表示两个数的关系,表示具体数时可以带单位。、百分数的分子可以是整数,也可以是小数比如:2.5%;而分数的分子不能是小数,只能是除0以外的自然数。、百分数的读法和分数的读法大体相同,也是先读分母,后读分子,但要注意读百分
2、数的分母时,不能读成一百分之几,而只能读作“百分之几”3、百分数的写法:通常不写成分数形式,而在原来分子后面加上“”来表示。如:5% 20%4、百分数、分数、小数的互化(1)、小数化成百分数:把小数点向右移动两位,同时在后面添上百分号。 如:0.23 5 0.026 三个数字化成百分数是:23%,500% ,2.6%(2)、 百分数化成小数:把小数点向左移动两位,同时去掉百分号。 如:20% ,56%,3.7% 三个数字化成小数是:0.2 0.56 0.037(3)、百分数化成分数:先把百分数化成分数,先把百分数改写成分母是否100的分数,能约分要约成最简分数。 如:25% 40% 化成分数是
3、: (4)、分数化成百分数: 用分数的基本性质,把分数分母扩大或缩小成分母是100的分数,再写成百分数形式。 如: 化成百分数形式:; 先把分数化成小数(除不尽时,通常保留三位小数),再把小数化成百分数。 如:化成百分数形式:(二)百分数应用题百分数应用题(一)求增加百分之几?减少百分之几?公式:增加百分之几=增加的部分单位1减少百分之几=减少的部分单位1例如:1、45立方厘米的水结成冰后,冰的体积为50立方厘米,冰的体积比原来水的体积增加百分之几?解题思路:根据公式增加百分之几=增加的部分单位1,先确定单位1是水,已经知道是45:增加的部分不知道,可以利用50减45求得5;最后用增加的部分5
4、单位1水的45就等于增加百分之几。计算步骤:第一步:单位1:水:45立方厘米第二步:增加的部分:5045=5立方厘米第三步:增加百分之几:545=11.1%2、45立方厘米的水结成冰后,体积增加了5立方厘米,冰的体积比原来水的体积增加百分之几?解题思路:根据公式增加百分之几=增加的部分单位1,先确定单位1是水,已经知道是45:增加的部分是5立方厘米;最后用增加的部分5单位1水的45就等于增加百分之几。计算步骤:第一步:单位1:水:45立方厘米第二步:增加的部分: 5立方厘米第三步:增加百分之几:545=11.1%3、水结成冰后,体积增加了5立方厘米,冰的体积为50立方厘米,冰的体积比原来水的体
5、积增加百分之几?解题思路:根据公式增加百分之几=增加的部分单位1,先确定单位1是水,不知道但可以根据题目“水结成冰后,体积增加了5立方厘米”知道水是少的,冰是多的,所以可以用505求出水是45立方厘米。加的部分是5立方厘米;最后用增加的部分5单位1水的45就等于增加百分之几。计算步骤:第一步:单位1:水:505=45立方厘米第二步:增加的部分: 5立方厘米第三步:增加百分之几:545=11.1%4、“减少百分之几与增加百分之几”的解题方法完全相同。5、与增加百分之几相同的还有“多百分之几”“提高百分之几”“增长百分之几“等。与减少百分之几相同的还有“少百分之几”“降低百分之几”“节约百分之几”
6、等。百分数应用题(二)比一个数增加百分之几的数,比一个数减少百分之几的数。例如1、矣得小学去年有80名学生,今年的学生人数比去年增加了25%,今年有多少名学生?解题思路:单位1去年已经知道用乘法,增加用(1+25%)算式:80(1+25%)2、矣得小学去年有80名学生,今年的学生人数比去年减少了25%,今年有多少名学生?解题思路:单位1去年已经知道用乘法,减少用(1-25%)算式:80(1-25%)3、矣得小学今年有100名学生,比去年增加了25%,去年有多少名学生?解题思路:单位1去年不知道用除法,增加用(1+25%)算式:100(1+25%)4、矣得小学今年有100名学生,比去年减少了25
7、%,去年有多少名学生?解题思路:单位1去年不知道用除法,增加用(1-25%)算式:100(1-25%)百分数应用题(三)列方程解百分数应用题1、小明看一本书,第一天看了全书的25%,第二天看了全书的20%,第一天比第二天多看20页,这本书一共有多少页?解题思路:单位1一本书不知道,可以选用方程或除法来解答。根据“第一天比第二天多看20页”可以知道第一天是多的,第二天是少的,第一天减去第二天等于多出的20页。等量关系式:第一天第二天=20页方法1:解:设这本书一共有X页。由“第一天看了全书的25%”可以知道第一天等于全书乘以25%,用X可以表示为25%X,由“第二天看了全书的20%”可以知道第二
8、天等于全书乘以20%,用X可以表示为20%X.依据等量关系式“第一天第二天=20页”可以列方程为:25%X20%X=20方法2:“第一天比第二天多看20页”可以知道20页是第一天和第二天的差。要求单位1只要用20页除以20页的对于分率。列算式为:20(25%20%)2、小明看一本书,第一天看了全书的25%,第二天看了全书的20%,两天共看了20页,这本书一共有多少页?4、如何借助大熊座找到北极星?(P58)等量关系式:由“两天共看了20页”可以知道第一天+等二天=20页。18、大多数生物都是由多细胞组成的,但也有一些生物,它们只有一个细胞,称为单细胞生物。如草履虫、变形虫、细菌等。方程法:解:
9、设这本书共有X页,则第一天为25%X,第二天为20%X。17、细胞学说的建立被誉为19世纪自然科学的三大发现之一。方程列为:25%X+20%X=2012、放大镜和显微镜的发明,大大扩展了我们的视野,让我们走进微小世界,让我们看到了微生物和细胞。算术法:由“两天共看了20页”可以知道20页是第一天和第二天的和,要求单位1只要用20页除以20页的对于分率。列算式为:20(25%+20%)1、焚烧处理垃圾的优缺点是什么?3、小明看一本书,第一天看了全书的25%,第二天看了全书的20%,还剩20页,这本书一共有多少页?等量关系式:一本书第一天第二天=20页二、问答题:方程法:解设这本书一共有X页,则第
10、一天为25%X,第二天为20%X。列方程为:X25%X20%X=20算术法:20(1- 25%X- 20%)缺点:不仅消耗大量电能,留下残余物,如果控制不好,还会产生有毒物质,造成二次污染。4、小明看一本书,第一天看了全书的25%,第二天比第一天多看10页,还剩20页,这本书一共有多少页?答:连接北斗七星勺形前端的两颗星,并将连线向勺口方延长约5倍远,处于此位置的那颗星就是北极星。方程法:解设这本书一共有X页,则第一天为25%X,第二天为(25%X+10)页。7、硫酸铜溶液与铁钉的反应属于化学反应。硫酸铜溶液的颜色是蓝色,将铁钉浸入硫酸铜溶液中,我们发现铁钉变红了。列方程为:X25%X(25%X+10)=20答:尽可能地不使用一次性用品;延长物品的使用寿命;包装盒纸在垃圾中比例很大,购物时减少对它们的使用。