1、本文格式为Word版,下载可任意编辑高三数学重要复习学问点总结五篇 高三同学要依据自己的条件,以及高中阶段学科学问交叉多、综合性强,以及考查的学问和思维触点广的特点,找寻一套行之有效的复习方法。下面就是我给大家带来的高三数学学问点,期望大能关怀到大家! 高三数学学问点1 1.进行集合的交、并、补运算时,不要忘了全集和空集的特殊状况,不要遗忘了借助数轴和文氏图进行求解. 2.在应用条件时,易A忽视是空集的状况 3.你会用补集的思想解决有关问题吗? 4.简洁命题与复合命题有什么区分?四种命题之间的相互关系是什么?如何推断充分与必要条件? 5.你知道“否命题”与“命题的否认形式”的区分. 6.求解与
2、函数有关的问题易忽视定义域优先的原则. 7.推断函数奇偶性时,易忽视检验函数定义域是否关于原点对称. 8.求一个函数的解析式和一个函数的反函数时,易忽视标注该函数的定义域. 9.原函数在区间-a,a上单调递增,则确定存在反函数,且反函数也单调递增;但一个函数存在反函数,此函数不愿定单调 10.你娴熟地把握了函数单调性的证明方法吗?定义法(取值,作差,判正负)和导数法 11.求函数单调性时,易错误地在多个单调区间之间添加符号“”和“或”;单调区间不能用集合或不等式表示. 12.求函数的值域必需先求函数的定义域。 13.如何应用函数的单调性与奇偶性解题?比较函数值的大小;解抽象函数不等式;求参数的
3、范围(恒成立问题).这几种基本应用你把握了吗? 14.解对数函数问题时,你留意到真数与底数的限制条件了吗? (真数大于零,底数大于零且不等于1)字母底数还需商量 15.三个二次(哪三个二次?)的关系及应用把握了吗?如何利用二次函数求最值? 16.用换元法解题时易忽视换元前后的等价性,易忽视参数的范围。 17.“实系数一元二次方程有实数解”转化时,你是否留意到:当时,“方程有解”不能转化为。若原题中没有指出是二次方程,二次函数或二次不等式,你是否考虑到二次项系数可能为的零的情形? 18.利用均值不等式求最值时,你是否留意到:“一正;二定;三等”. 19.确定值不等式的解法及其几何意义是什么? 2
4、0.解分式不等式应留意什么问题?用“根轴法”解整式(分式)不等式的留意事项是什么? 21.解含参数不等式的通法是“定义域为前提,函数的单调性为基础,分类商量是关键”,留意解完之后要写上:“综上,原不等式的解集是”. 22.在求不等式的解集、定义域及值域时,其结果确定要用集合或区间表示;不能用不等式表示. 23.两个不等式相乘时,必需留意同向同正时才能相乘,即同向同正可乘;同时要留意“同号可倒”即ab0,a0. 24.解决一些等比数列的前项和问题,你留意到要对公比及两种状况进行商量了吗? 25.在“已知,求”的问题中,你在利用公式时留意到了吗?(时,应有)需要验证,有些题目通项是分段函数。 26
5、.你知道存在的条件吗?(你理解数列、有穷数列、无穷数列的概念吗?你知道无穷数列的前项和与全部项的和的不同吗?什么样的无穷等比数列的全部项的和必定存在? 27.数列单调性问题能否等同于对应函数的单调性问题?(数列是特殊函数,但其定义域中的值不是连续的。) 28.应用数学归纳法一要留意步骤齐全,二要留意从到过程中,先假设时成立,再结合一些数学方法用来证明时也成立。 29.正角、负角、零角、象限角的概念你清楚吗?,若角的终边在坐标轴上,那它归哪个象限呢?你知道锐角与第一象限的角;终边相同的角和相等的角的区分吗? 30.三角函数的定义及单位圆内的三角函数线(正弦线、余弦线、正切线)的定义你知道吗? 3
6、1.在解三角问题时,你留意到正切函数、余切函数的定义域了吗?你留意到正弦函数、余弦函数的有界性了吗? 32.你还记得三角化简的通性通法吗?(切割化弦、降幂公式、用三角公式转化消灭特殊角.异角化同角,异名化同名,高次化低次) 33.反正弦、反余弦、反正切函数的取值范围分别是 34.你还记得某些特殊角的三角函数值吗? 35.把握正弦函数、余弦函数及正切函数的图象和性质.你会写三角函数的单调区间吗?会写简洁的三角不等式的解集吗?(要留意数形结合与书写规范,可别忘了),你是否清楚函数的图象可以由函数经过怎样的变换得到吗? 36.函数的图象的平移,方程的平移以及点的平移公式易混: (1)函数的图象的平移
7、为“左+右-,上+下-”;如函数的图象左移2个单位且下移3个单位得到的图象的解析式为y=2(x+2)+4-3,即y=2x+5. (2)方程表示的图形的平移为“左+右-,上-下+”;如直线左移2个个单位且下移3个单位得到的图象的解析式为2(x+2)-(y+3)+4=0,即y=2x+5. (3)点的平移公式:点P(x,y)按向量平移到点P(x,y),则x=x+hy=y+k. 37.在三角函数中求一个角时,留意考虑两方面了吗?(先求出某一个三角函数值,再判定角的范围) 38.形如的周期都是,但的周期为。 39.正弦定理时易忘比值还等于2R。 高三数学学问点2 1.函数的奇偶性 (1)若f(x)是偶函
8、数,那么f(x)=f(-x); (2)若f(x)是奇函数,0在其定义域内,则f(0)=0(可用于求参数); (3)推断函数奇偶性可用定义的等价形式:f(x)f(-x)=0或(f(x)0); (4)若所给函数的解析式较为冗杂,应先化简,再推断其奇偶性; (5)奇函数在对称的单调区间内有相同的单调性;偶函数在对称的单调区间内有相反的单调性; 2.复合函数的有关问题 (1)复合函数定义域求法:若已知的定义域为a,b,其复合函数fg(x)的定义域由不等式ag(x)b解出即可;若已知fg(x)的定义域为a,b,求f(x)的定义域,相当于xa,b时,求g(x)的值域(即f(x)的定义域);争辩函数的问题确
9、定要留意定义域优先的原则。 (2)复合函数的单调性由“同增异减”判定; 3.函数图像(或方程曲线的对称性) (1)证明函数图像的对称性,即证明图像上任意点关于对称中心(对称轴)的对称点仍在图像上; (2)证明图像C1与C2的对称性,即证明C1上任意点关于对称中心(对称轴)的对称点仍在C2上,反之亦然; (3)曲线C1:f(x,y)=0,关于y=x+a(y=-x+a)的对称曲线C2的方程为f(y-a,x+a)=0(或f(-y+a,-x+a)=0); (4)曲线C1:f(x,y)=0关于点(a,b)的对称曲线C2方程为:f(2a-x,2b-y)=0; (5)若函数y=f(x)对xR时,f(a+x)
10、=f(a-x)恒成立,则y=f(x)图像关于直线x=a对称; (6)函数y=f(x-a)与y=f(b-x)的图像关于直线x=对称; 4.函数的周期性 (1)y=f(x)对xR时,f(x+a)=f(x-a)或f(x-2a)=f(x)(a0)恒成立,则y=f(x)是周期为2a的周期函数; (2)若y=f(x)是偶函数,其图像又关于直线x=a对称,则f(x)是周期为2a的周期函数; (3)若y=f(x)奇函数,其图像又关于直线x=a对称,则f(x)是周期为4a的周期函数; (4)若y=f(x)关于点(a,0),(b,0)对称,则f(x)是周期为2的周期函数; (5)y=f(x)的图象关于直线x=a,
11、x=b(ab)对称,则函数y=f(x)是周期为2的周期函数; (6)y=f(x)对xR时,f(x+a)=-f(x)(或f(x+a)=,则y=f(x)是周期为2的周期函数; 5.方程k=f(x)有解kD(D为f(x)的值域); 6.af(x)恒成立af(x)max,;af(x)恒成立af(x)min; 7.(1)(a0,a1,b0,nR+); (2)logaN=(a0,a1,b0,b1); (3)logab的符号由口诀“同正异负”记忆; (4)alogaN=N(a0,a1,N0); 8.推断对应是否为映射时,抓住两点: (1)A中元素必需都有象且; (2)B中元素不愿定都有原象,并且A中不同元素
12、在B中可以有相同的象; 9.能娴熟地用定义证明函数的单调性,求反函数,推断函数的奇偶性。 10.对于反函数,应把握以下一些结论: (1)定义域上的单调函数必有反函数; (2)奇函数的反函数也是奇函数; (3)定义域为非单元素集的偶函数不存在反函数; (4)周期函数不存在反函数; (5)互为反函数的两个函数具有相同的单调性; (6)y=f(x)与y=f-1(x)互为反函数,设f(x)的定义域为A,值域为B,则有ff-1(x)=x(xB),f-1f(x)=x(xA); 11.处理二次函数的问题勿忘数形结合 二次函数在闭区间上必有最值,求最值问题用“两看法”:一看开口方向;二看对称轴与所给区间的相对
13、位置关系; 12.依据单调性 利用一次函数在区间上的保号性可解决求一类参数的范围问题; 13.恒成立问题的处理方法 (1)分别参数法; (2)转化为一元二次方程的根的分布列不等式(组)求解; 高三数学学问点3 a(1)=a,a(n)为公差为r的等差数列 通项公式: a(n)=a(n-1)+r=a(n-2)+2r=.=an-(n-1)+(n-1)r=a(1)+(n-1)r=a+(n-1)r. 可用归纳法证明。 n=1时,a(1)=a+(1-1)r=a。成立。 假设n=k时,等差数列的通项公式成立。a(k)=a+(k-1)r 则,n=k+1时,a(k+1)=a(k)+r=a+(k-1)r+r=a+
14、(k+1)-1r. 通项公式也成立。 因此,由归纳法知,等差数列的通项公式是正确的。 求和公式: S(n)=a(1)+a(2)+.+a(n) =a+(a+r)+.+a+(n-1)r =na+r1+2+.+(n-1) =na+n(n-1)r/2 同样,可用归纳法证明求和公式。 a(1)=a,a(n)为公比为r(r不等于0)的等比数列 通项公式: a(n)=a(n-1)r=a(n-2)r2=.=an-(n-1)r(n-1)=a(1)r(n-1)=ar(n-1). 可用归纳法证明等比数列的通项公式。 求和公式: S(n)=a(1)+a(2)+.+a(n) =a+ar+.+ar(n-1) =a1+r+
15、.+r(n-1) r不等于1时, S(n)=a1-rn/1-r r=1时, S(n)=na. 同样,可用归纳法证明求和公式。 高三数学学问点4 1、直线的倾斜角 定义:x轴正向与直线向上方向之间所成的角叫直线的倾斜角。特殊地,当直线与x轴平行或重合时,我们规定它的倾斜角为0度。因此,倾斜角的取值范围是0180 2、直线的斜率 定义:倾斜角不是90的直线,它的倾斜角的正切叫做这条直线的斜率。直线的斜率常用k表示。即。斜率反映直线与轴的倾斜程度。 过两点的直线的斜率公式: 留意下面四点: (1)当时,公式右边无意义,直线的斜率不存在,倾斜角为90; (2)k与P1、P2的挨次无关; (3)以后求斜
16、率可不通过倾斜角而由直线上两点的坐标直接求得; (4)求直线的倾斜角可由直线上两点的坐标先求斜率得到。 3、直线方程 点斜式: 直线斜率k,且过点 留意:当直线的斜率为0时,k=0,直线的方程是y=y1。当直线的斜率为90时,直线的斜率不存在,它的方程不能用点斜式表示.但因l上每一点的横坐标都等于x1,所以它的方程是x=x1。 高三数学学问点5 一、函数的定义域的常用求法: 1、分式的分母不等于零; 2、偶次方根的被开方数大于等于零; 3、对数的真数大于零; 4、指数函数和对数函数的底数大于零且不等于1; 5、三角函数正切函数y=tanx中xk+/2; 6、假如函数是由实际意义确定的解析式,应
17、依据自变量的实际意义确定其取值范围。 二、函数的解析式的常用求法: 1、定义法; 2、换元法; 3、待定系数法; 4、函数方程法; 5、参数法; 6、配方法 三、函数的值域的常用求法: 1、换元法; 2、配方法; 3、判别式法; 4、几何法; 5、不等式法; 6、单调性法; 7、直接法 四、函数的最值的常用求法: 1、配方法; 2、换元法; 3、不等式法; 4、几何法; 5、单调性法 五、函数单调性的常用结论: 1、若f(x),g(x)均为某区间上的增(减)函数,则f(x)+g(x)在这个区间上也为增(减)函数。 2、若f(x)为增(减)函数,则-f(x)为减(增)函数。 3、若f(x)与g(
18、x)的单调性相同,则fg(x)是增函数;若f(x)与g(x)的单调性不同,则fg(x)是减函数。 4、奇函数在对称区间上的单调性相同,偶函数在对称区间上的单调性相反。 5、常用函数的单调性解答:比较大小、求值域、求最值、解不等式、证不等式、作函数图象。 六、函数奇偶性的常用结论: 1、假如一个奇函数在x=0处有定义,则f(0)=0,假如一个函数y=f(x)既是奇函数又是偶函数,则f(x)=0(反之不成立)。 2、两个奇(偶)函数之和(差)为奇(偶)函数;之积(商)为偶函数。 3、一个奇函数与一个偶函数的积(商)为奇函数。 4、两个函数y=f(u)和u=g(x)复合而成的函数,只要其中有一个是偶函数,那么该复合函数就是偶函数;当两个函数都是奇函数时,该复合函数是奇函数。 5、若函数f(x)的定义域关于原点对称,则f(x)可以表示为f(x)=1/2f(x)+f(-x)+1/2f(x)+f(-x),该式的特点是:右端为一个奇函数和一个偶函数的和。 高三数学重要复习学问点总结五篇 第 10 页 共 10 页