资源描述
专题四:曲线运动-万有引力与航天
专题四:曲线运动 万有引力与航天
一、曲线运动:
(一)曲线运动的条件:F与v0不在同一直线上。
(二)曲线运动的特点:v沿切线、F指向凹侧;
1、力与轨迹:合力指向轨迹的凹侧;
2、力与速度:切向分力改变v的大小;
径向分力改变v的方向;
(具体阐述平抛、斜向上抛、匀速圆周运动、水流星等运动中力与v的关系,并引出一个观点:物体在某一方向上的运动只取决于此方向的受力和初速度。)
3、轨迹与速度:轨迹的切线代表v的方向,而不是v大小,注意与x-t图象的区别。
例一:如图所示,点电荷的静电场中电场线用实线表示,但其方向未标明,虚线是某一带电粒子通过该电场区域时的运动轨迹.a、b是轨迹上的两点.若带电粒子在运动中只受到电场力的作用,根据此图可作出正确判断的是 (CD )
A. 带电粒子所带电荷的性质
B. a、b两点电场强度方向
C. 带电粒子a、b两点处的受力方向
D. 带电粒子在a、b两点的速度何处较大
例二:一质点在xOy平面内的运动轨迹如图所示,下列判断正确的是( A )
A.若在x方向始终匀速运动,则在y方向先减速后加速运动
B.若在x方向始终匀速运动,则在y方向先加速后减速运动
C.若在y方向始终匀速运动,则在x方向一直加速运动
D.若在y方向始终匀速运动,则在x方向一直减速运动
例三:一带正电的小钢球m以初速度v0在光滑水平面上运动,后受到另一正电荷的排斥作用力而做曲线运动,从M点运动到N点,如图所示.过轨迹上M、N两点的切线MM′和NN′将轨迹MN上方的空间划分为四个区域,由此可知,该正电荷可能处在哪个区域( )
A.①区
B.③区
C.②或④区
D.均不可能
(三)曲线运动的分解——首先让学生回答什么是运动的合成和分解
1、定则:平行四边形(x、v、a均为矢量)
2、性质:独立性、等时性、等效性(前一个性质是保障,后两个性质可列方程求解)
3、思想:将曲线运动分解为直线运动或熟悉的运动模型。
例一:一半径为r光滑圆筒高h,如右图所示,现将一小球以速度v从a点水平切入圆筒,结果刚好从其正下方的b点射出。试说明小球在圆筒内作何运动,速度v应满足什么条件?
4、原则:分解实际运动
(四)曲线运动的模型:
1、速度关联:
例一:如图所示,轮船以恒定的水平速度v0沿水面向远离河岸方向运动,通过跨越滑轮的钢丝绳拉动岸上水平轨道上的重物,当钢丝绳与水平面夹角为a 的瞬间,岸上重物移动的速度多大? v0cosa
例二:如图所示,一个带滑轮的物体放在水平面上,一根轻绳固定在C处,通过滑轮B和D 牵引物体,BC水平,以水平恒速v拉绳上自由端时,物体沿水平面前进.求当跨过B的两绳夹角为a时,物体的运动速度为多少?
法一:设经Δt时间物体由B运动到B’ ,如图,使DE=DB’,则D端绳子运动的距离s为
,
当Δt→0,可以认为B’E⊥BD,则
,
又 ,,可得
,
所以物体的运动速度为 .
法二:关联速度法——
(1)设只有一根水平绳子拉动物体:
(2)设只有一根倾斜绳子拉动物体:
(3)把两种情况合在一起:
2、小船过河:
例一:一条宽为L的河,水流速度为v1,船在静水中的速度为v2,那么:
(1)怎样渡河时间最短?最短时间是多少?
(2)若v1<v2,怎样渡河位移最小?——得心应手、尽在掌控
(3)若v1>v2,怎样渡河船漂下的距离最短?最短距离为多大?——身不由己、尽力而为
例二:A船从港口P出发,拦截正以速度v0沿直线MN航行的B船,P与B船所在航线的垂直距离为a,船起航时,B船与P点的距离为b,且b>a,如图所示。 如果略去A船起动时的加速过程,认为它一起航就作匀速运动,求A船能拦到B船所需的最小速率。
法一:设两船相遇于点, 与间的夹角为a,则:
船的位移——
船的位移——
因时间相等,故有——
整理化简以上各式后有
其中
可见当
即当船速度方向与垂直时有最小值
法二:以B船为参考系,A船已经具有水平向右的分速度v0,再有一自身的分速度vA后,合速度必须朝向B船方能实施拦截。由图,显然,满足这样条件的最小。
3、平抛运动:
(1)类型:任意的初速度+只受重力;
轨迹有直线和抛物线两种。(轨迹得出的方法:建立y与x的函数关系,如平抛运动有,其斜率,此处速度,进一步证明轨迹的斜率不是速度,只是速度的方向。)
例一:、在光滑的水平面内,一质量m=1 kg的质点以速度v0=10 m/s沿x轴正方向运动,经过原点后受一竖直向上的恒力F=15 N作用,从此开始,物体离开水平面而在竖直平面内运动。直线OA与x轴成37°角,如图所示,曲线为质点的轨迹图,求(g取10 m/s2):
①写出质点的运动轨迹方程;
②轨迹与直线OA的交点坐标;
③质点经过P点时的速度。
①y=1/40 x2 ②P (30 m,22.5 m)
③m/s,与x轴正方向成arctan1.5角斜向上
(2)方法:运动的分解与合成
平抛运动中的两个矢量三角形——tana =2tanq
速度矢量三角形:
位移矢量三角形:
此结论也可表述为平抛运动的物体在任一位置的瞬时速度的反向延长线过水平位移的中点。
例二:如图所示,光滑斜面长为b,宽为a,倾角为θ,一物块沿斜面左上方顶点P水平射入,而从右下方顶点Q离开斜面,求入射初速度。
例三:如图所示,墙壁上落着两只飞镖,它们是从同一位置水平射出的,飞镖A与竖直墙壁成530,飞镖B与竖直墙壁成370,两者相距为d.假设飞镖的运动是平抛运动,求射出点离墙壁的水平距离.(sin370=0.6,cos370=0.8)
解析:首先清楚飞镖与墙壁的夹角为速度与墙壁所成的角,做出如图所示的轨迹图,设水平距离为x,将两只飞镖的速度反向延长与初速度的延长线交于一点C,,,,解得.
例四:如图所示,从倾角为θ的斜面顶端水平抛出一钢球,落到斜面底端,已知抛出点到落点间斜边长为L。
(1)求抛出的初速度。
(2)抛出后经多长时间物体离斜面最远?并求最远距离。
(1) (2)
法一:速度反向延长线过水平位移的中点。
法二:类斜向上抛运动。
(四)曲线运动的类型:
1、从力的角度分类:
恒力:平衡状态——静止或匀速直线运动
匀变速直线运动——匀加速、匀减速直线运动
匀变速曲线运动——抛体运动
变力:变速曲线运动——匀速圆周运动
单摆(角度范围、受力特征)
变速直线运动——弹簧振子
例一:若以固定点为起点画出若干矢量,分别代表质点在不同时刻的速度。则这些矢量的末端所形成的轨迹被定义为“速矢端迹”,则以下说法中不正确的是( A )
A.匀速直线运动的速矢端迹是线段; B.匀加速直线运动的速矢端迹是射线;
C.匀速圆周运动的速矢端迹是圆; D.平抛运动的速矢端迹是竖直方向的射线。
2、从运动的角度分类:
(1)两个匀速直线运动的合运动——仍然是匀速直线运动。如:蜡块的运动、小船过河问题等。
例一:如图所示,一块橡皮用细线悬挂于O点,用铅笔靠着线的左侧水平向右匀速移动,运动中始终保持悬线竖直,则橡皮运动的速度(A)
(A)大小和方向均不变
(B)大小不变,方向改变
(C)大小改变,方向不变
(D)大小和方向均改变
变形:……
例二:如图所示,水平面上固定一个与水平面夹角为θ的斜杆A,另一竖直杆B以速度v水平向左做匀速直线运动,则从两杆开始相交到最后分离的过程中,两杆交点P的速度方向和大小分别为( C )
A.水平向左,大小为v
B.竖直向上,大小为vtan θ
C.沿A杆斜向上,大小为
D.沿A杆斜向上,大小为vcos θ
解析:两杆的交点P参与了两个分运动:与B杆一起以速度v水平向左的匀速直线运动和沿B杆竖直向上的匀速运动,交点P的实际运动方向沿A杆斜向上,如图所示,则交点P的速度大小为vP=,故C正确.
(2)一个匀速直线运动与一个匀变速直线运动的合运动仍然是匀变速运动,当二者共线时为匀变速直线运动(如竖直上抛、下抛运动),不共线时为匀变速曲线运动(如斜抛、平抛)。
讲解:斜向上抛运动
原始:匀速v+自由落体
一般:水平——vcosq 匀速
竖直——vsinq 匀减速
特殊:沿着v方向——初速度为v,以gcosq 匀减速
垂直v方向——初速度为零,以gsinq 匀加速
可见,运动的分解与力的分解相似,并不唯一。
例一:在2009年秋季运动会上,高一3班的运动员小李参与掷5㎏铅球项目的比赛,他以8m/s的速度,且与水平方向成30O角的速度斜向上抛出(为了简便,不考虑运动员的身高),如图所示。取重力加速度g=10m/s2,不计空气阻力。求:
(1)铅球在空中飞行时间为;0.8s
(2)铅球在空中达到的最大高度为H ;0.8m
(2)铅球的水平射程S。5.54m
思考:运动员掷铅球要想射程最大,掷铅球的仰角应是多大?
——由知q =45O。
例二:(匀速+匀变速)如图所示的塔吊臂上有一个可以沿水平方向运动的小车A,小车下装有吊着物体B的吊钩。在小车A与物体B以相同的水平速度沿吊臂方向匀速运动的同时,吊钩将物体B向上吊起。A、B之间的距离以d=H-2t2(SI)(SI表示国际单位制,式中H为吊臂离地面的高度)规律变化。则物体做 ( B、C)
A.速度大小不变的曲线运动
B.速度大小增加的曲线运动
C.加速度大小方向均不变的曲线运动
D.加速度大小方向均变化的曲线运动
例三:在节日里,礼花弹爆炸后在空中形成五彩缤纷的焰火四散开来,此模型可简化为有8个小球从同一点以大小相同的初速度,分别作斜抛运动,如图所示,则任一时刻,小球在空中的排列的形状形成什么图案?它将做什么运动?
答案:观察节日焰火,经常可以看到五彩缤纷的焰火呈球形。一般说来,焰火升空后突然爆炸成许许多多小块(看作发光质点),各发光质点抛出速度v0大小相等,方向不同,所以各质点有的向上做减速运动,有的向下做加速运动,有的做平抛运动,有的做斜抛运动,这些发光质点会形成一个不断扩大的球面(“礼花”越开越大)!
解析一:用抛体运动的知识解释
设某一发光质点的抛出速度为v0,与水平方向夹角为θ,将v0沿水平方向(x轴)和竖直方向(y轴,向上为正方向)正交分解。由抛体运动的研究可知质点的位置坐标为:
水平x=v0 cos θ ·t;竖直y=v0 sin θ ·t-gt2
联立以上两式得: x2+(y+gt2)2= (v0t)2。
这是一个以C(0,-gt2)为圆心、以v0t为半径的圆的方程式。可见,只要初速度v0相同,无论初速度方向怎样,各发光质点均落在一个圆上(在空间形成一个球面,其球心在不断下降,“礼花”球一面扩大,一面下落),如图所示。
解析二:用运动合成和分解的知识解释
礼花炮爆炸后,每个发光质点的抛出速度v0大小相同,方向各异,都可以分解为沿原速度方向的匀速直线运动和只在重力作用下的自由落体运动(各个发光质点质量都较小,空气阻力的影响也很小)。很明显,前一分运动使各发光质点时刻构成一个圆,后一个分运动都相同,所以观察者看到的是一个五彩缤纷的“礼花”球一面扩大、一面下落。
(3)两个初速度为零的匀加速直线运动的合运动仍然是匀加速直线运动。
(4)两个匀变速直线运动的合运动仍然是匀变速运动;若合初速度与合加速度在同一直线上,则合运动为匀变速直线运动,如图(甲)所示,不共线时为匀变速曲线运动。如图(乙)所示。
二、圆周运动:
(一)基本关系与方法
1、圆周运动——
2、非匀速圆周运动——向心力公式F=mv2/R=mω2R,既适用于匀速圆周运动,又适用于变速圆周运动,对于变速圆周运动来说,式中的v和ω是做圆周运动的物体在那一时刻的瞬时线速度和瞬时角速度。对于任何圆周运动的物体来说,将物体所受到的所有外力沿半径方向和垂直于半径方向分解后,所有在半径方向上的合力就是向心力:
(如单摆、水流星)
(二)基本模型
1、同轴传动:w相同;
2、皮带传动:v相同;
例1、 无级变速是在变速范围内任意连续地变换速度,性能优于传统的档位变速器。很多种高档汽车都应用了无级变速。如图所示是截锥式无级变速模型示意图,两个锥轮中间有一个滚轮,主动轮、滚轮、从动轮之间靠着彼此之间的摩擦力带动。当位于主动轮与从动轮之间的滚轮从左向右移动时从动轮转速降低,滚轮从右向左移动时从动轮转速增加。当滚轮位于主动轮直径D1,从动轮直径D2的位置上时,则主动轮转速n1,从动轮转速n2之间的关系是( B )
A. B.
C. D.
解析:v1=v2,即,可见,故
例2、如图所示,两个用相同材料制成的靠摩擦转动的轮A和B水平放置,两轮半径RA=2RB.当主动轮A匀速转动时,在A轮边缘上放置的小木块恰能相对静止在A轮边缘上.若将小木块放在B轮上,欲使木块相对B轮也静止,则木块距B轮转轴的最大距离为( C )
A.RB/4 B.RB/3 C.RB/2 D.RB
3、圆锥摆模型
①运动特点——物体做匀速圆周运动,物体做圆周运动的圆心在水平面内;
②受力特点——物体所受的重力与弹力(拉力或支持力)的合力充当向心力,合力的方向是水平指向圆心的。
例1、如图所示,一个竖直放置的圆锥筒可绕其中心轴OO′转动,筒内壁粗糙,筒口半径和筒高分别为R和H,筒内壁A点的高度为筒高的一半,内壁上有一质量为m的小物块。求:
(1)当筒不转动时,物块静止在筒壁A点受到的摩擦力和支持力的大小;、
(2)当物块在A点随筒做匀速转动,且其所受到的摩擦力为零时,筒转动的角速度。
例2、如图所示,长为L的细绳一端固定,另一端系一质量为m的小球。给小球一个合适的初速度,小球便可在水平面内做匀速圆周运动,这样就构成了一个圆锥摆,设细绳与竖直方向的夹角为θ。下列说法中正确的是( )
A.小球受重力、绳的拉力和向心力作用
B.小球只受重力和绳的拉力作用
C.θ 越大,小球运动的速度越大
D.θ 越大,小球运动的周期越大
讲点:(1)题中选项虽然容易得出,但是应该予以定量、严谨的计算。
(2)计算使圆锥摆摆动的最小线速度,而最小角速度:
(3)周期的计算:
——摆线确定,周期由q 确定;
——高度确定,周期确定,与无关。
例3、在火车转弯处,让外轨高于内轨,如图所示,转弯时所需向心力由重力和弹力的合力提供。若轨道水平,转弯时所需向心力应由外轨对车轮的挤压力提供,而这样对车轨会造成损坏。车速大时,容易出事故。设车轨间距为L,两轨高度差为h,车转弯半径为R,质量为M的火车运行时应当有多大的速度?
情况
v车>(ghR/L)1/2
v车>(ghR/L)1/2
合力F与F向的关系
F<F向
F>F向
不利影响
火车挤压外轨
火车挤压内轨
结果
外轨对车轮的弹力补充向心力
内轨对车轮的弹力抵消合力
4、竖直面内的圆周运动
(1)运动特点:
①绳模型——
最低点:——做完整的圆周运动,最高点临界速度——最小速度;
——运动至圆心等高位置以上后做斜向上抛运动;
——在与圆心等高位置以下,来回摆动。
②杆模型——
最低点:——做完整的圆周运动,最高点临界速度——最小速度为0;
——物体即来回摆动,不会脱离轨道,最低点速度最大。
(2)受力特点:
例1、半径为R的圆桶固定在小车上,有一光滑小球静止在圆桶的最低点,如图所示.小车以速度v向右匀速运动.当小车遇到障碍物突然停止,小球在圆桶中上升的高度可能为(ACD)
A.等于v2/2g
B.大于v2/2g
C.小于v2/2g
D.等于2R
例2、一质量为m的金属小球拴在长为L的细线下端,细线上端固定在O点处,在悬点O的正下方P处钉有一光滑钉子,如图所示。现将小球拉至悬线水平,然后释放。为使悬线碰到钉子后,小球能绕钉子在竖直平面内做完整的圆周运动,则OP的最小距离是多少? 3/5 L
(三)基本题型
1、圆周运动
例1、如图所示,质量相等的小球A、B分别固定在轻杆的中点及端点,当杆在光滑的水平面上绕O点匀速转动时,求杆的OA段及AB段对球的拉力之比.
法一、受力分析法;法二、系统的牛顿第二定律。
2、临界问题
例1、如图所示,水平转盘的中心有个竖直小圆筒,质量为m的物体A放在转盘上,A到竖直筒中心的距离为r,物体A通过轻绳、无摩擦的滑轮与物体B相连,B与A质量相同.物体A与转盘间的最大静摩擦力是正压力的m倍,则转盘转动的角速度在什么范围内,物体A才能与转盘相对静止,并随盘转动?
例2、如图,一根不可伸长的轻绳两端分别系着小球A和物块B,跨过固定于斜面体顶端的小滑轮O,倾角为θ=30°的斜面体置于水平地面上,A的质量为m,B的质量为4m,开始时,用手托住A,使OA段绳恰好处于水平伸直状态(绳中无拉力),OB绳平行于斜面,此时B静止,将A由静止释放,其下摆过程中斜面体保持静止,下列判断中正确的是(ABC)
A.物块B受到摩擦力先减小后增大
B.地面对斜面体的摩擦力方向一直向右
C.小球A重力的瞬时功率先变大后变小
D.小球A的机械能不守恒,A、B系统的机械能守恒
三、万有引力与航天
(一)开普勒三大定律:
轨道定律——
面积定律——可在学习能量知识之前得出近日点速度快,远日点速度小;
周期定律——
例1、1990年4月25日,科学家将哈勃天文望远镜送上距地球表面约600 km的高空,使得人类对宇宙中星体的观测与研究有了极大的进展。假设哈勃望远镜沿圆轨道绕地球运行。已知地球半径为6.4×106m,利用地球同步卫星与地球表面的距离为3.6×107m这一事实可得到哈勃望远镜绕地球运行的周期。以下数据中最接近其运行周期的是( B )
A.0.6小时 B.1.6小时 C.4.0小时 D.24小时
(二)万有引力定律:
例1、万有引力定律的得出:
例2、万有引力定律的验证:
(1)已知月球围绕地球公转的轨道半径是地球半径的60倍。请从理论上推导月球公转的向心加速度a与地球表面的重力加速度g的大小关系。
(2)天文观测表明,月球围绕地球公转的周期T=27.3天,地球半径R=6.4×106m,请计算天文观测结果与你的理论推导是否一致。
理论预判——
实验测量——
万有引力定律的特殊应用:
例3、如图所示,一个质量均匀分布的半径为的球体对球外质点的万有引力为。如果在球体中央挖去半径为的一部分球体,且,则原球体剩余部分对质点的万有引力变为多少?
间接求法:设球体的质量为,质点的质量为,质点到球心的距离为,则
挖去部分的质量,
此部分对质点的万有引力为。
所以剩余部分对质点的万有引力。
直接求法:剩余部分的质量为,质点到球壳球心的距离仍为,故。
例4、假设将质量为的铅球放在地心处,在地球内部的处挖去质量为的物体,如图所示,则铅球受到的万有引力大小为________,方向________。(地球半径为,)
割补法:先将地球补完整,将质量为的铅球放在地心处,则根据对称性,铅球受到的万有引力为0。在处挖去一部分物体后,则相当于在与点对称的点有质量为的物体对铅球的作用力,沿向左,大小。
例5、在密度为ρ0的无限大的液体中,有两个半径为R、密度为ρ的球,相距为d,且ρ>ρ0,求两球受到的万有引力。
解析:可以设想,假定其中一个球的密度慢慢减少,当其密度与液体密度相等时,则相当于一个密度为ρ的球放在密度为ρ0的液体中,根据对称性,此时密度为ρ的球所受液体引力的合力为零。当球的密度由ρ0慢慢增加到ρ时,两球之间又会产生引力。这时这个球能产生引力的质量为△m=πR3(ρ-ρ0)故万有引力的大小:
F=G= G= π2R6。
(三)基本方法:
人造卫星和苹果是同等地位的,对于同一个中心天体,轨道半径r唯一地决定天体运行的各个物理量。
(四)基本模型:
一中一卫:
近地卫星————
同步卫星————高度约为3.6×104 km(距地心6.6r 、距地面5.6r),环绕速度大小3.08 km/s,环绕方向与地球自转相同
侦察卫星————也叫极地卫星
例1、如图,地球赤道上的山丘e,近地资源卫星p和同步通信卫星q均在赤道平面上绕地心做匀速圆周运动。设e、p、q的圆周运动速率分别为v1、v2、v3,向心加速度分别为a1、a2、a3,则( D )
A. v1>v2>v3 B. v1<v2<v3 C. a1>a2>a3 D. a1<a3<a2
例2、侦察卫星在通过地球两极上空的圆轨道上运行时,它的运行轨道距地面的高度为h,要使卫星在一天的时间内将地球上赤道各处的日照条件下的情况全部拍摄下来,卫星通过赤道上空时,卫星上的摄像机至少应拍摄地面上赤道圆周的弧长是多少?设地球半径R,地面处的重力加速度g,地球自转的周期为T。
一地一物
计算中心天体质量和密度的两种方法:
——环绕法
——代换法
(卡文迪许就是用这一方法估算地球的质量和平均密度的)
例1、重力是由于地球吸引而使物体受到的力,吸引力的方向指向地心,重力的方向竖直向下,试分析竖直向下的方向与指向地心方向的最大夹角。
解析——设地球为一质量分布均匀的球体,其质量为M,半径为R,自转的角速度为ω,一个物体质量为m,处于纬度为θ的地球表面。如图所示。
根据万有引力定律可知,物体受到的万有引力为:
,方向指向地心;
由牛顿第二定律知物体随着地球的自转做匀速圆周运动的向心力为:
,方向指向圆周轨道的圆心;
物体所受的重力为:
,方向竖直向下;
由图:
——在南(北)纬处,竖直向下的方向与指向地心的方向有最大的夹角,大小为。
将、、代入并解可得:
例2、宇航员站在一星球表面上的某高处,沿水平方向抛出一个小球.经过时间t,小球落到星球表面,测得抛出点与落地点之间的距离为L.若抛出时的初速增大到2倍,则抛出点与落地点之间的距离为L.已知两落地点在同一水平面上,该星球的半径为R,万有引力常数为G.求该星球的质量M.
例3、太空中有一颗绕恒星做匀速圆周运动的行星,此行星上一昼夜的时间是6h,在行星的赤道处用弹簧测力计测量物体的重力的读数比在两极时测量的读数小10%,求此行星的平均密度。
例4、赤道附近的重力加速度为g,赤道上的物体随地球自转的向心加速度为a,要使赤道上的物体“飘”起来,请计算地球自转的角速度w至少变为现在角速度w0的多少倍?
一中二卫:其中的一颗卫星受到中心天体与另一颗卫星的引力之和提供向心力。
例1、如图,O为中心天体,行星A、B的周期分别为T1、T2,从图示位置开始,求此后两行星第一次相遇的时间及第一次相距最远的时间?
双星
力 ——
质量——
运动——,,,
三星
例1、宇宙中存在一些离其它恒星较远的、由质量相等的三颗星组成的三星系统,通常可忽略其它星体对它们的引力作用。已观测到稳定的三星系统存在两种基本的构成形式:一种是三颗星位于同一直线上,两颗星围绕中央星在同一半径为R的圆轨道上运行;另一种形式是三颗星位于等边三角形的三个项点上,并沿外接于等边三角形的圆形轨道运行。设每个星体的质量均为m。
(1)试求第一种形式下,星体运动的线速度和周期。
(2)假设两种形式星体的运动周期相同,第二种形式下星体之间的距离应为多少?
四星
(五)基本题型:
求质量;
求密度;
求天体运行的物理量:
(较偏较难)例1、我国发射的“嫦娥一号”探月卫星沿近似于圆形轨道绕月飞行。为了获得月球表面全貌的信息,让卫星轨道平面缓慢变化。卫星将获得的信息持续用微波信号发回地球。设地球和月球的质量分别为M和m,地球和月球的半径分别为R和R1,月球绕地球的轨道半径和卫星绕月球的轨道半径分别为r和r1,月球绕地球转动的周期为T。假定在卫星绕月运行的一个周期内卫星轨道平面与地月连心线共面,求在该周期内卫星发射的微波信号因月球遮挡而不能到达地球的时间(用M、m、R、R1、r、r1和T表示,忽略月球绕地球转动对遮挡时间的影响)。
黑洞问题
例1、1997年8月26日在日本举行的国际天文学大会上,德国Max Planck学会的一个研究组宣布了他们的研究成果:银河系的中心可能存在一个大黑洞,他们的根据是用口径为3.5m的天文望远镜对猎户座中位于银河系中心附近的星体进行近六年的观测所得的数据。他们发现,距离银河系中心约60亿公里的星体正以2000km/s的速度围绕银河系中心旋转。根据上面的数据,试在经典力学的范围内,通过计算确认如果银河系中心确实存在黑洞的活,其最大半径是多少。
三大宇宙速度问题
练习1、2007年4月24日,欧洲科学家宣布在太阳系之外发现了一颗可能适合人类居住的类地行星Gliese 581c。这颗围绕红矮星Gliese 581运行的星球有类似地球的温度,表面可能有液态水存在,距离地球约为2光年,直径约为地球的1.5倍,质量约为地球的5倍,绕红矮星Gliese 581运行的周期约为13天。假设有一艘宇宙飞船飞临该星球表面附近轨道,下列说法正确的是( BC )
A.飞船在Gliese 581c表面附近运行的周期约为13天
B.飞船在Gliese 581c表面附近运行时的速度大于7.9 km/s
C.人在Gliese 581c上所受重力比在地球上所受重力大
D.Gliese 581c的平均密度比地球平均密度小
40
展开阅读全文