收藏 分销(赏)

初一下学期相交线与平行线测试数学试题培优试卷.doc

上传人:丰**** 文档编号:4738443 上传时间:2024-10-11 格式:DOC 页数:30 大小:1.79MB
下载 相关 举报
初一下学期相交线与平行线测试数学试题培优试卷.doc_第1页
第1页 / 共30页
初一下学期相交线与平行线测试数学试题培优试卷.doc_第2页
第2页 / 共30页
点击查看更多>>
资源描述
一、选择题 1.为了亮化某景点,石家庄市在两条笔直且互相平行的景观道MN、QP上分别放置A、B两盏激光灯,如图所示.A灯发出的光束自AM逆时针旋转至AN便立即回转,B灯发出的光束自BP逆时针旋转至BQ便立即回转,两灯不间断照射,A灯每秒转动30°,B灯每秒转动10°,B灯先转动2秒,A灯才开始转动,当B灯光束第一次到达BQ之前,两灯的光束互相平行时A灯旋转的时间是(  ) A.1或6秒 B.8.5秒 C.1或8.5秒 D.2或6秒 2.如图,直线AB、CD相交于点E,DF∥AB.若∠AEC=100°,则∠D等于(  ) A.70° B.80° C.90° D.100° 3.如图,∠1=70°,直线a平移后得到直线b,则∠2-∠3( ) A.70° B.180° C.110° D.80° 4.如图,直线AB,CD相交于点O,EO⊥AB,垂直为点O,∠BOD=50°,则∠COE=(  ) A.30° B.140° C.50° D.60° 5.一副直角三角板如图放置,其中∠F=∠ACB=90°,∠D=45°,∠B=60°,AB//DC,则∠CAE的度数为(  ) A.25° B.20° C.15° D.10° 6.如图,C为的边OA上一点,过点C作交的平分线OE于点F,作交BO的延长线于点H,若,现有以下结论:①;②;③;④.结论正确的个数是( ) A.1个 B.2个 C.3个 D.4个 7.如图,,平分,平分,,,则下列结论:①,②,③,④.其中正确的是( ) A.①②③ B.①②④ C.②③④ D.①②③④ 8.如图,直线,点在直线上,下列结论正确的是( ) A. B. C. D. 9.如图,,点为上方一点,分别为的角平分线,若,则的度数为( ) A. B. C. D. 10.如图,已知,下列正确的是( ) A.若,则 B.若,则 C.若,则 D.若,则 二、填空题 11.如图,已知A1BAnC,则∠A1+∠A2+…+∠An等于__________(用含n的式子表示). 12.如图,a∥b,∠2=∠3,∠1=40°,则∠4的度数是______度. 13.已知,,,,且,请直接写出、、的数量关系________. 14.如图,已知,,,,则的度数是__________. 15.如图,a∥b,∠2=∠3,则∠4的度数是___度. 16.如图,将长方形沿折叠,点落在边上的点处,点落在点处,若,则等于______. 17.如图,AB∥CD,EM是∠AMF的平分线,NF是∠CNE的平分线,EN,MF交于点O.若∠E+60°=2∠F,则∠AMF的大小是___. 18.一副三角板按如图所示(共定点A)叠放在一起,若固定三角板ABC,改变三角板ADE的位置(其中A点位置始终不变),当∠BAD=___°时,DE∥AB. 19.如图,分别作和的角平分线交于点,称为第一次操作,则_______;接着作和的角平分线交于,称为第二次操作,继续作和的角平分线交于,称方第三次操作,如此一直操作下去,则______. 20.将一副三角板中的两块直角三角板的顶点按如图方式放在一起,其中,,且、、三点在同一直线上.现将三角板绕点顺时针转动度(),在转动过程中,若三角板和三角板有一组边互相平行,则转动的角度为__________. 三、解答题 21.已知,AB∥CD,点E为射线FG上一点. (1)如图1,若∠EAF=25°,∠EDG=45°,则∠AED=   . (2)如图2,当点E在FG延长线上时,此时CD与AE交于点H,则∠AED、∠EAF、∠EDG之间满足怎样的关系,请说明你的结论; (3)如图3,当点E在FG延长线上时,DP平分∠EDC,∠AED=32°,∠P=30°,求∠EKD的度数. 22.阅读下面材料: 小亮同学遇到这样一个问题: 已知:如图甲,ABCD,E为AB,CD之间一点,连接BE,DE,得到∠BED. 求证:∠BED=∠B+∠D. (1)小亮写出了该问题的证明,请你帮他把证明过程补充完整. 证明:过点E作EFAB, 则有∠BEF= . ∵ABCD, ∴ , ∴∠FED= . ∴∠BED=∠BEF+∠FED=∠B+∠D. (2)请你参考小亮思考问题的方法,解决问题:如图乙, 已知:直线ab,点A,B在直线a上,点C,D在直线b上,连接AD,BC,BE平分∠ABC,DE平分∠ADC,且BE,DE所在的直线交于点E. ①如图1,当点B在点A的左侧时,若∠ABC=60°,∠ADC=70°,求∠BED的度数; ②如图2,当点B在点A的右侧时,设∠ABC=α,∠ADC=β,请你求出∠BED的度数(用含有α,β的式子表示). 23.综合与实践 背景阅读:在同一平面内,两条不重合的直线的位置关系有相交、平行,若两条不重合的直线只有一个公共点,我们就说这两条直线相交,若两条直线不相交,我们就说这两条直线互相平行两条直线的位置关系的性质和判定是几何的重要知识,是初中阶段几何合情推理的基础. 已知:AM∥CN,点B为平面内一点,AB⊥BC于B. 问题解决:(1)如图1,直接写出∠A和∠C之间的数量关系; (2)如图2,过点B作BD⊥AM于点D,求证:∠ABD=∠C; (3)如图3,在(2)问的条件下,点E、F在DM上,连接BE、BF、CF,BF平分∠DBC,BE平分∠ABD,若∠FCB+∠NCF=180°,∠BFC=3∠DBE,则∠EBC= . 24.已知,.点在上,点在 上. (1)如图1中,、、的数量关系为: ;(不需要证明);如图2中,、、的数量关系为: ;(不需要证明) (2)如图 3中,平分,平分,且,求的度数; (3)如图4中,,平分,平分,且,则的大小是否发生变化,若变化,请说明理由,若不变化,求出么的度数. 25.如图,已知//,点是射线上一动点(与点不重合),分别平分和,分别交射线于点. (1)当时,的度数是_______; (2)当,求的度数(用的代数式表示); (3)当点运动时,与的度数之比是否随点的运动而发生变化?若不变化,请求出这个比值;若变化,请写出变化规律. (4)当点运动到使时,请直接写出的度数. 【参考答案】***试卷处理标记,请不要删除 一、选择题 1.C 解析:C 【分析】 设灯旋转的时间为秒,求出的取值范围为,再分①,②和③三种情况,先分别求出和的度数,再根据平行线的性质可得,由此建立方程,解方程即可得. 【详解】 解:设灯旋转的时间为秒, 灯光束第一次到达所需时间为秒,灯光束第一次到达所需时间为秒, 灯先转动2秒,灯才开始转动, ,即, 由题意,分以下三种情况: ①如图,当时,, , , , ,即, 解得,符合题设; ②如图,当时,, , , , ,即, 解得符合题设; ③如图,当时,, , 同理可得:,即, 解得,不符题设,舍去; 综上,灯旋转的时间为1秒或秒, 故选:C. 【点睛】 本题考查了平行线的性质、一元一次方程的几何应用等知识点,正确求出时间的取值范围,并据此分三种情况讨论是解题关键. 2.B 解析:B 【详解】 因为AB∥DF,所以∠D+∠DEB=180°,因为∠DEB与∠AEC是对顶角, 所以∠DEB=100°,所以∠D=180°﹣∠DEB=80°.故选B. 3.C 解析:C 【详解】 【分析】作AB∥a,先证AB∥a∥b,由平行线性质得∠2=180°-∠1+∠3,变形可得结果. 【详解】作AB∥a,由直线a平移后得到直线b, 所以,AB∥a∥b 所以,∠2=180°-∠1+∠3, 所以,∠2-∠3=180°-∠1=180°-70°=110°. 故选C 【点睛】本题考核知识点:平行线性质.解题关键点:熟记平行线性质. 4.B 解析:B 【详解】 试题解析:EO⊥AB, 故选B. 5.C 解析:C 【分析】 利用平行线的性质和给出的已知数据即可求出的度数. 【详解】 解:,, , ,, , , , , 故选:C. 【点睛】 本题考查了平行线的性质,解题的关键是熟记平行线的性质. 6.D 解析:D 【分析】 根据平行线的性质可得,结合角平分线的定义可判断①;再由平角的定义可判断②;由平行线的性质可判断③;由余角及补角的定义可判断④. 【详解】 解:,, , 平分, ,故①正确; , , ,故②正确; ,, ,故③正确; ,, ,故④正确. 正确为①②③④, 故选:D. 【点睛】 本题主要考查平行线的性质,角平分线的定义,垂直的定义,灵活运用平行线的性质是解题的关键. 7.B 解析:B 【分析】 根据角平分线的性质可得,,,再利用平角定义可得∠BCF=90°,进而可得①正确;首先计算出∠ACB的度数,再利用平行线的性质可得∠2的度数,从而可得∠1的度数;利用三角形内角和计算出∠3的度数,然后计算出∠ACE的度数,可分析出③错误;根据∠3和∠4的度数可得④正确. 【详解】 解:如图, ∵BC平分∠ACD,CF平分∠ACG, ∴ ∵∠ACG+∠ACD=180°, ∴∠ACF+∠ACB=90°, ∴CB⊥CF,故①正确, ∵CD∥AB,∠BAC=50°, ∴∠ACG=50°, ∴∠ACF=∠4=25°, ∴∠ACB=90°-25°=65°, ∴∠BCD=65°, ∵CD∥AB, ∴∠2=∠BCD=65°, ∵∠1=∠2, ∴∠1=65°,故②正确; ∵∠BCD=65°, ∴∠ACB=65°, ∵∠1=∠2=65°, ∴∠3=50°, ∴∠ACE=15°, ∴③∠ACE=2∠4错误; ∵∠4=25°,∠3=50°, ∴∠3=2∠4,故④正确, 故选:B. 【点睛】 此题主要考查了平行线的性质,以及角平分线的性质,关键是理清图中角之间的和差关系. 8.D 解析:D 【分析】 根据两直线平行,同旁内角互补可得∠1+∠AOF=180°,再根据两直线平行,内错角相等可得∠3=∠AOC,而通过∠AOF=∠AOC-∠2,整理可得∠1+∠3-∠2=180°. 【详解】 解:∵AB∥EF, ∴∠1+∠AOF=180°, ∵CD∥AB, ∴∠3=∠AOC, 又∵∠AOF=∠AOC−∠2=∠3-∠2, ∴∠1+∠3-∠2=180°. 故选:D. 【点睛】 本题主要考查平行线的性质,从复杂图形中找出内错角,同旁内角是解题的关键. 9.A 解析:A 【分析】 过G作GMAB,根据平行线的性质可得∠2=∠5,∠6=∠4,进而可得∠FGC=∠2+∠4,再利用平行线的性质进行等量代换可得3∠1=210°,求出∠1的度数,然后可得答案. 【详解】 解:过G作GMAB, ∴∠2=∠5, ∵ABCD, ∴MGCD, ∴∠6=∠4, ∴∠FGC=∠5+∠6=∠2+∠4, ∵FG、CG分别为∠EFG,∠ECD的角平分线, ∴∠1=∠2=∠EFG,∠3=∠4=∠ECD, ∵∠E+2∠G=210°, ∴∠E+∠1+∠2+∠ECD=210°, ∵ABCD, ∴∠ENB=∠ECD, ∴∠E+∠1+∠2+∠ENB=210°, ∵∠1=∠E+∠ENB, ∴∠1+∠1+∠2=210°, ∴3∠1=210°, ∴∠1=70°, ∴∠EFG=2×70°=140°. 故选:A. 【点睛】 此题主要考查了平行线的性质,关键是正确作出辅助线,掌握两直线平行同位角相等,内错角相等. 10.D 解析:D 【分析】 根据平行线的性质和平行线的判定逐个分析即可求解. 【详解】 解:如图,记相交所成的锐角为 , 因为, 所以, 若, 所以, 所以e//f, 而不能推出图中的直线平行, 故选D. 【点睛】 本题主要考查平行线的性质和判定,解决本题的关键是要熟练掌握平行线的性质和判定. 二、填空题 11.【分析】 过点向右作,过点向右作,得到,根据两直线平行同旁内角互补即可得出答案. 【详解】 解:如图,过点向右作,过点向右作 , 故答案为:. 【点睛】 本题考查了平行线的性质定理,根据题 解析: 【分析】 过点向右作,过点向右作,得到,根据两直线平行同旁内角互补即可得出答案. 【详解】 解:如图,过点向右作,过点向右作 , 故答案为:. 【点睛】 本题考查了平行线的性质定理,根据题意作合适的辅助线是解题的关键. 12.40 【解析】 试题分析:如图,分别作a、b的平行线,然后根据a∥b,可得∠1=∠5,∠6=∠7,∠8=∠4,然后根据∠2=∠3,即∠5+∠6=∠7+∠8,然后由∠1=40°,可求得∠4=40°. 解析:40 【解析】 试题分析:如图,分别作a、b的平行线,然后根据a∥b,可得∠1=∠5,∠6=∠7,∠8=∠4,然后根据∠2=∠3,即∠5+∠6=∠7+∠8,然后由∠1=40°,可求得∠4=40°. 故答案为:40. 13.(上式变式都正确) 【分析】 过点E作,过点F作,可得出(根据平行于同一直线的两条直线互相平行),根据平行线的性质,可得出各个角之间的关系,利用等量代换、等式的性质即可得出答案. 【详解】 解:如图 解析:(上式变式都正确) 【分析】 过点E作,过点F作,可得出(根据平行于同一直线的两条直线互相平行),根据平行线的性质,可得出各个角之间的关系,利用等量代换、等式的性质即可得出答案. 【详解】 解:如图所示,过点E作,过点F作, ∵, ∴, ∵, ∴, ∵, ∴, ∵, ∴, ∴, ∴, ∵,,,且, ∴, 故答案为:. 【点睛】 题目主要考察平行线的性质及等式的性质,作出相应的辅助线、找出相应的角的关系是解题关键. 14.【分析】 连接AC,设∠EAF=x,∠ECF=y,∠EAB=3x,∠ECD=3y,根据平行线性质得出∠BAC+∠ACD=180°,求出∠CAE+∠ACE=180°−(2x+2y),求出∠AEC=2 解析: 【分析】 连接AC,设∠EAF=x,∠ECF=y,∠EAB=3x,∠ECD=3y,根据平行线性质得出∠BAC+∠ACD=180°,求出∠CAE+∠ACE=180°−(2x+2y),求出∠AEC=2(x+y),∠AFC═2(x+y),即可得出答案. 【详解】 解:连接AC, 设∠EAF=x,∠ECF=y,∠EAB=3x,∠ECD=3y, ∵AB∥CD, ∴∠BAC+∠ACD=180°, ∴∠CAE+3x+∠ACE+3y=180°, ∴∠CAE+∠ACE=180°−(3x+3y),∠FAC+∠FCA=180°−(2x+2y) ∴∠AEC=180°−(∠CAE+∠ACE) =180°−[180°−(3x+3y)] =3x+3y =3(x+y), ∠AFC=180°−(∠FAC+∠FCA) =180°−[180°−(2x+2y)] =2x+2y =2(x+y), ∴∠AEC=∠AFC=129°. 故答案为:129°. 【点睛】 本题考查了平行线的性质和三角形内角和定理的应用,根据题意作出辅助线,构造出三角形,利用三角形内角和定理求解是解答此题的关键. 15.40 【分析】 分别作a∥c,a∥d,则a∥b∥c∥d,由题可知根据平行线的性质得出再用等式的性质得出再根据平行线的性质由a∥c,b∥d,得出即可得出. 【详解】 如图,作a∥c,a∥d,则a∥b∥ 解析:40 【分析】 分别作a∥c,a∥d,则a∥b∥c∥d,由题可知根据平行线的性质得出再用等式的性质得出再根据平行线的性质由a∥c,b∥d,得出即可得出. 【详解】 如图,作a∥c,a∥d,则a∥b∥c∥d, ∵∠2=∠3, ∴ 又∵c∥d, ∴ ∴ ∵a∥c,b∥d, ∴ ∴ 故答案为:40. 【点睛】 本题考查平行线的判定与性质,解题关键是熟练掌握平行线的判定与性质;两直线平行,内错角相等;如果两条直线都和第三条直线平行,那么这两条直线也互相平行. 16.105° 【分析】 根据折叠得出∠DEF=∠HEF,求出∠DEF的度数,根据平行线的性质得出∠DEF+∠EFC=180°,代入求出即可. 【详解】 解:∵将长方形ABCD沿EF折叠,点D落在AB边上 解析:105° 【分析】 根据折叠得出∠DEF=∠HEF,求出∠DEF的度数,根据平行线的性质得出∠DEF+∠EFC=180°,代入求出即可. 【详解】 解:∵将长方形ABCD沿EF折叠,点D落在AB边上的H点处,点C落在点G处, ∴∠DEF=∠HEF, ∵∠AEH=30°, ∴, ∵四边形ABCD是长方形, ∴AD∥BC, ∴∠DEF+∠EFC=180°, ∴∠EFC=180°-75°=105°, 故答案为:105°. 【点睛】 本题考查了平行线的性质,折叠的性质等知识点,能求出∠DEF=∠HEF和∠DEF+∠EFC=180°是解此题的关键. 17.【分析】 作,则,,而,所以,同理可得,变形得到,利用等式的性质得,加上已给条件,于是得到,易得的度数. 【详解】 解:作,如图, , , ,, 是的平分线, , , , 同理可得, , , , 解析: 【分析】 作,则,,而,所以,同理可得,变形得到,利用等式的性质得,加上已给条件,于是得到,易得的度数. 【详解】 解:作,如图, , , ,, 是的平分线, , , , 同理可得, , , , ,即, , , 故答案为:. 【点睛】 本题考查了平行线的性质:两直线平行,同位角相等;两直线平行,内错角相等;两直线平行,同旁内角互补,合理作辅助线和把一般结论推广是解决问题的关键. 18.30或150 【分析】 分两种情况,根据ED∥AB,利用平行线的性质,即可得到∠BAD的度数. 【详解】 解:如图1所示:当ED∥AB时,∠BAD=∠D=30°; 如图2所示,当ED∥AB时,∠D 解析:30或150 【分析】 分两种情况,根据ED∥AB,利用平行线的性质,即可得到∠BAD的度数. 【详解】 解:如图1所示:当ED∥AB时,∠BAD=∠D=30°; 如图2所示,当ED∥AB时,∠D=∠BAD=180°, ∵∠D=30° ∴∠BAD=180°-30°=150°; 故答案为:30°或150°. 【点睛】 本题主要考查了平行线的判定,平行线的判定是由角的数量关系判断两直线的位置关系,平行线的性质是由直线的平行关系来寻找角的数量关系. 19.90° 【分析】 过P1作P1Q∥AB,则P1Q∥CD,根据平行线的性质得到∠AEF+∠CFE=180°,∠AEP1=∠EP1Q,∠CFP1=∠FP1Q,结合角平分线的定义可计算∠E 解析:90° 【分析】 过P1作P1Q∥AB,则P1Q∥CD,根据平行线的性质得到∠AEF+∠CFE=180°,∠AEP1=∠EP1Q,∠CFP1=∠FP1Q,结合角平分线的定义可计算∠EP1F,再同理求出∠P2,∠P3,总结规律可得. 【详解】 解:过P1作P1Q∥AB,则P1Q∥CD, ∵AB∥CD, ∴∠AEF+∠CFE=180°, ∠AEP1=∠EP1Q,∠CFP1=∠FP1Q, ∵和的角平分线交于点, ∴∠EP1F=∠EP1Q+∠FP1Q=∠AEP1+∠CFP1=(∠AEF+∠CFE)=90°; 同理可得:∠P2=(∠AEF+∠CFE)=45°, ∠P3=(∠AEF+∠CFE)=22.5°, ..., ∴, 故答案为:90°,. 【点睛】 本题主要考查了平行线的性质,角平分线的定义,规律性问题,解决问题的关键是作辅助线构造内错角,依据两直线平行,内错角相等进行计算求解. 20.或或 【分析】 分三种情况讨论,由平行线的性质可求解. 【详解】 解:若和只有一组边互相平行,分三种情况: ①若,则; ②若,则; ③当时,, 故答案为:或或. 【点睛】 本题考查了三角板的角度 解析:或或 【分析】 分三种情况讨论,由平行线的性质可求解. 【详解】 解:若和只有一组边互相平行,分三种情况: ①若,则; ②若,则; ③当时,, 故答案为:或或. 【点睛】 本题考查了三角板的角度运算,平行线的性质,掌握旋转的性质是本题的关键. 三、解答题 21.(1)70°;(2),证明见解析;(3)122° 【分析】 (1)过作,根据平行线的性质得到,,即可求得; (2)过过作,根据平行线的性质得到,,即; (3)设,则,通过三角形内角和得到,由角平分线定义及得到,求出的值再通过三角形内角和求. 【详解】 解:(1)过作, , , ,, , 故答案为:; (2). 理由如下: 过作, , , ,, ,, ; (3), 设,则, ,, 又,, , 平分, , , , 即,解得, , . 【点睛】 本题主要考查了平行线的性质和判定,正确做出辅助线是解决问题的关键. 22.(1)∠B,EF,CD,∠D;(2)①65°;②180°﹣ 【分析】 (1)根据平行线的判定定理与性质定理解答即可; (2)①如图1,过点E作EF∥AB,当点B在点A的左侧时,根据∠ABC=60°,∠ADC=70°,参考小亮思考问题的方法即可求∠BED的度数; ②如图2,过点E作EF∥AB,当点B在点A的右侧时,∠ABC=α,∠ADC=β,参考小亮思考问题的方法即可求出∠BED的度数. 【详解】 解:(1)过点E作EF∥AB, 则有∠BEF=∠B, ∵AB∥CD, ∴EF∥CD, ∴∠FED=∠D, ∴∠BED=∠BEF+∠FED=∠B+∠D; 故答案为:∠B;EF;CD;∠D; (2)①如图1,过点E作EF∥AB,有∠BEF=∠EBA. ∵AB∥CD, ∴EF∥CD. ∴∠FED=∠EDC. ∴∠BEF+∠FED=∠EBA+∠EDC. 即∠BED=∠EBA+∠EDC, ∵BE平分∠ABC,DE平分∠ADC, ∴∠EBA=∠ABC=30°,∠EDC=∠ADC=35°, ∴∠BED=∠EBA+∠EDC=65°. 答:∠BED的度数为65°; ②如图2,过点E作EF∥AB,有∠BEF+∠EBA=180°. ∴∠BEF=180°﹣∠EBA, ∵AB∥CD, ∴EF∥CD. ∴∠FED=∠EDC. ∴∠BEF+∠FED=180°﹣∠EBA+∠EDC. 即∠BED=180°﹣∠EBA+∠EDC, ∵BE平分∠ABC,DE平分∠ADC, ∴∠EBA=∠ABC=,∠EDC=∠ADC=, ∴∠BED=180°﹣∠EBA+∠EDC=180°﹣. 答:∠BED的度数为180°﹣. 【点睛】 本题考查了平行线的判定与性质,解决本题的关键是熟练掌握平行线的判定与性质. 23.(1);(2)见解析;(3)105° 【分析】 (1)通过平行线性质和直角三角形内角关系即可求解. (2)过点B作BG∥DM,根据平行线找角的联系即可求解. (3)利用(2)的结论,结合角平分线性质即可求解. 【详解】 解:(1)如图1,设AM与BC交于点O,∵AM∥CN, ∴∠C=∠AOB, ∵AB⊥BC, ∴∠ABC=90°, ∴∠A+∠AOB=90°, ∠A+∠C=90°, 故答案为:∠A+∠C=90°; (2)证明:如图2,过点B作BG∥DM, ∵BD⊥AM, ∴DB⊥BG, ∴∠DBG=90°, ∴∠ABD+∠ABG=90°, ∵AB⊥BC, ∴∠CBG+∠ABG=90°, ∴∠ABD=∠CBG, ∵AM∥CN, ∴∠C=∠CBG, ∴∠ABD=∠C; (3)如图3,过点B作BG∥DM, ∵BF平分∠DBC,BE平分∠ABD, ∴∠DBF=∠CBF,∠DBE=∠ABE, 由(2)知∠ABD=∠CBG, ∴∠ABF=∠GBF, 设∠DBE=α,∠ABF=β, 则∠ABE=α,∠ABD=2α=∠CBG, ∠GBF=∠AFB=β, ∠BFC=3∠DBE=3α, ∴∠AFC=3α+β, ∵∠AFC+∠NCF=180°,∠FCB+∠NCF=180°, ∴∠FCB=∠AFC=3α+β, △BCF中,由∠CBF+∠BFC+∠BCF=180°得:2α+β+3α+3α+β=180°, ∵AB⊥BC, ∴β+β+2α=90°, ∴α=15°, ∴∠ABE=15°, ∴∠EBC=∠ABE+∠ABC=15°+90°=105°. 故答案为:105°. 【点睛】 本题考查平行线性质,画辅助线,找到角的和差倍分关系是求解本题的关键. 24.(1)∠BME=∠MEN−∠END;∠BMF=∠MFN+∠FND.(2)120°(3)∠FEQ的大小没发生变化,∠FEQ=30°. 【分析】 (1)过E作EHAB,易得EHABCD,根据平行线的性质可求解;过F作FHAB,易得FHABCD,根据平行线的性质可求解; (2)根据(1)的结论及角平分线的定义可得2(∠BME+∠END)+∠BMF−∠FND=180°,可求解∠BMF=60°,进而可求解; (3)根据平行线的性质及角平分线的定义可推知∠FEQ=∠BME,进而可求解. 【详解】 解:(1)过E作EHAB,如图1, ∴∠BME=∠MEH, ∵ABCD, ∴HECD, ∴∠END=∠HEN, ∴∠MEN=∠MEH+∠HEN=∠BME+∠END, 即∠BME=∠MEN−∠END. 如图2,过F作FHAB, ∴∠BMF=∠MFK, ∵ABCD, ∴FHCD, ∴∠FND=∠KFN, ∴∠MFN=∠MFK−∠KFN=∠BMF−∠FND, 即:∠BMF=∠MFN+∠FND. 故答案为∠BME=∠MEN−∠END;∠BMF=∠MFN+∠FND. (2)由(1)得∠BME=∠MEN−∠END;∠BMF=∠MFN+∠FND. ∵NE平分∠FND,MB平分∠FME, ∴∠FME=∠BME+∠BMF,∠FND=∠FNE+∠END, ∵2∠MEN+∠MFN=180°, ∴2(∠BME+∠END)+∠BMF−∠FND=180°, ∴2∠BME+2∠END+∠BMF−∠FND=180°, 即2∠BMF+∠FND+∠BMF−∠FND=180°, 解得∠BMF=60°, ∴∠FME=2∠BMF=120°; (3)∠FEQ的大小没发生变化,∠FEQ=30°. 由(1)知:∠MEN=∠BME+∠END, ∵EF平分∠MEN,NP平分∠END, ∴∠FEN=∠MEN=(∠BME+∠END),∠ENP=∠END, ∵EQNP, ∴∠NEQ=∠ENP, ∴∠FEQ=∠FEN−∠NEQ=(∠BME+∠END)−∠END=∠BME, ∵∠BME=60°, ∴∠FEQ=×60°=30°. 【点睛】 本题主要考查平行线的性质及角平分线的定义,作辅助线是解题的关键. 25.(1)120°;(2)90°-x°;(3)不变,;(4)45° 【分析】 (1)由平行线的性质:两直线平行同旁内角互补可得; (2)由平行线的性质可得∠ABN=180°-x°,根据角平分线的定义知∠ABP=2∠CBP、∠PBN=2∠DBP,可得2∠CBP+2∠DBP=180°-x°,即∠CBD=∠CBP+∠DBP=90°-x°; (3)由AM∥BN得∠APB=∠PBN、∠ADB=∠DBN,根据BD平分∠PBN知∠PBN=2∠DBN,从而可得∠APB:∠ADB=2:1; (4)由AM∥BN得∠ACB=∠CBN,当∠ACB=∠ABD时有∠CBN=∠ABD,得∠ABC+∠CBD=∠CBD+∠DBN,即∠ABC=∠DBN,根据角平分线的定义可得∠ABP=∠PBN=∠ABN=2∠DBN,由平行线的性质可得∠A+∠ABN=90°,即可得出答案. 【详解】 解:(1)∵AM∥BN,∠A=60°, ∴∠A+∠ABN=180°, ∴∠ABN=120°; (2)∵AM∥BN, ∴∠ABN+∠A=180°, ∴∠ABN=180°-x°, ∴∠ABP+∠PBN=180°-x°, ∵BC平分∠ABP,BD平分∠PBN, ∴∠ABP=2∠CBP,∠PBN=2∠DBP, ∴2∠CBP+2∠DBP=180°-x°, ∴∠CBD=∠CBP+∠DBP=(180°-x°)=90°-x°; (3)不变,∠ADB:∠APB=. ∵AM∥BN, ∴∠APB=∠PBN,∠ADB=∠DBN, ∵BD平分∠PBN, ∴∠PBN=2∠DBN, ∴∠APB:∠ADB=2:1, ∴∠ADB:∠APB=; (4)∵AM∥BN, ∴∠ACB=∠CBN, 当∠ACB=∠ABD时,则有∠CBN=∠ABD, ∴∠ABC+∠CBD=∠CBD+∠DBN, ∴∠ABC=∠DBN, ∵BC平分∠ABP,BD平分∠PBN, ∴∠ABP=2∠ABC,∠PBN=2∠DBN, ∴∠ABP=∠PBN=2∠DBN=∠ABN, ∵AM∥BN, ∴∠A+∠ABN=180°, ∴∠A+∠ABN=90°, ∴∠A+2∠DBN=90°, ∴∠A+∠DBN=(∠A+2∠DBN)=45°. 【点睛】 本题主要考查平行线的性质和角平分线的定义,熟练掌握平行线的性质是解题的关键.
展开阅读全文

开通  VIP会员、SVIP会员  优惠大
下载10份以上建议开通VIP会员
下载20份以上建议开通SVIP会员


开通VIP      成为共赢上传
相似文档                                   自信AI助手自信AI助手

当前位置:首页 > 教育专区 > 初中数学

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4009-655-100  投诉/维权电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服