资源描述
苏州北外附属苏州湾外国语学校八年级上册期末数学试卷
一、选择题
1、下列图形既是轴对称图形又是中心对称图形的是( )
A. B. C. D.
2、若一粒米的质量约是0.000029kg,我国有14亿人,如果每人每天浪费10粒米,那么全国人民一年会浪费掉大米.节约粮食,人人有责;光盘行动,意义重大!将数据0.000029用科学记数法表示为( )
A. B. C. D.
3、下列运算正确的是( )
A.(﹣2ab2)3=8a2b6 B.3ab+2b=5ab
C.(﹣x2)•(﹣2x)3=﹣8x5 D.2m(m2﹣3mn)=2m3﹣6m2n
4、若代数式在实数范围内有意义,则x的取值范围是( )
A. B. C. D.且
5、下列等式中,从左到右的变形是因式分解的是( )
A.x(x-2)=x2-2x B.(x+1)2=x2+2x+1
C.x2-4=(x+2)(x-2) D.x2+2x+4=(x+1)2+3
6、某数学老师在课堂上设计了一个接力游戏,用合作的方式完成分式化简,规则是:每人只能看到前一人给的式子,并进行一步计算,再将计算结果传递给下一人,最后完成化简,过程如图所示.对于三个人的接力过程判断正确的是( )
A.三个人都正确 B.甲有错误
C.乙有错误 D.丙有错误
7、如图,AB=AD,∠B=∠DAE,下列选项( )不可判定△ABC≌△ADE
A.AC=DE B.BC=AE C.∠C=∠E D.∠BAC=∠ADE
8、已知一次函数的图象不经过第四象限,且关于x的分式方程有整数解,则满足条件的所有整数a的和为( )
A.12 B.6 C.4 D.2
9、如图所示,在中,.DE垂直平分AB,交BC于点E.若.则( )
A.3cm B.4cm C.5cm D.10cm
二、填空题
10、如图有两张正方形纸片A和B,图1将B放置在A内部,测得阴影部分面积为2,图2将正方形AB并列放置后构造新正方形,测得阴影部分面积为20,若将3个正方形A和2个正方形B并列放置后构造新正方形如图3,(图2,图3中正方形AB纸片均无重叠部分)则图3阴影部分面积( )
A.22 B.24 C.42 D.44
11、当x=___时,分式的值为0.
12、在平面直角坐标系xOy中,点A的坐标为(0,3),点B与点A关于x轴对称,点C在x轴上,若△ABC为等腰直角三角形,则点C的坐标为_________.
13、若,则_____.
14、求值:______.
15、如图,将等边折叠,使点B恰好落在AC边上的点D处,折痕为EF,O为折痕EF上的动点,若AD=2,AC=6,则的周长最小值为______.
16、如图,四边形∽四边形,,,,则______.
17、如图,两个正方形的边长分别为,,如果,,则图中阴影部分的面积是__________.
18、如图,已知四边形ABCD中,AB=12cm,BC=10cm,CD=14cm,∠B=∠C,点E为AB的中点.如果点P在线段BC上以2cm/s的速度沿B﹣C运动,同时,点Q在线段CD上由C点向D点运动.当点Q的运动速度为 _______cm/s时,能够使△BPE与△CQP全等.
三、解答题
19、因式分解
(1);
(2).
20、先化简,再求值:,其中.
21、如图,点B、C、D、F在一条直线上,FD=BC,DE=CA,EF=AB,求证:EF∥AB.
22、某同学在学习过程中,对教材的一个有趣的问题做如下探究:
【习题回顾】
已知:如图1,在△ABC中,角平分线BO、CO交于点O.求∠BOC的度数.
(1)若∠A=40º,请直接写出∠BOC=________;
(2)【变式思考】若∠A=α,请猜想与的关系,并说明理由;
(3)【拓展延伸】已知:如图2,在△ABC中,角平分线BO、CO交于点O,OD⊥OB,交边BC于点D,作∠ABE的平分线交CO的延长线于点F.若∠F=β,猜想∠BAC与β的关系,并说明理由.
23、阅读下列材料:
关于的方程:
的解是,;
(即)的解是,;
的解是,;
的解是;…
(1)请观察上述方程与解的特征,比较关于的方程与它们的关系,猜想它的解是什么?并利用“方程的解”的概念进行验证;
(2)由上述的观察、比较、猜想、验证,可以得出结论:如果方程的左边是未知数与其倒数的倍数的和,方程的右边的形式与左边完全相同,只是把其中的未知数换成了某个常数,那么这样的方程可以直接得解,请用这个结论解关于的方程:.
24、好学小东同学,在学习多项式乘以多项式时发现:( x+4)(2x+5)(3x-6)的结果是一个多项式,并且最高次项为: x•2x•3x=3x3,常数项为:4×5×(-6)=-120,那么一次项是多少呢?要解决这个问题,就是要确定该一次项的系数.根据尝试和总结他发现:一次项系数就是:×5×(-6)+2×(-6)×4+3×4×5=-3,即一次项为-3x.
请你认真领会小东同学解决问题的思路,方法,仔细分析上面等式的结构特征.结合自己对多项式乘法法则的理解,解决以下问题.
(1)计算(x+2)(3x+1)(5x-3)所得多项式的一次项系数为_____.
(2)( x+6)(2x+3)(5x-4)所得多项式的二次项系数为_______.
(3)若计算(x2+x+1)(x2-3x+a)(2x-1)所得多项式不含一次项,求a的值;
(4)若(x+1)2021=a0x2021+a1x2020+a2x2019+···+a2020x+a2021,则a2020=_____.
25、操作发现:如图1,D是等边△ABC边BA上的一动点(点D与点B不重合),连接DC,以DC为边在BC上方作等边△DCF,连接AF,易证AF=BD(不需要证明);
类比猜想:①如图2,当动点D运动至等边△ABC边BA的延长线上时,其它作法与图1相同,猜想AF与BD在图1中的结论是否仍然成立。
深入探究:②如图3,当动点D在等边△ABC边BA上的一动点(点D与点B不重合),连接DC,以DC为边在BC上方、下方分别作等边△DCF和等边△DCF′,连接AF,BF′你能发现AF,BF′与AB有何数量关系,并证明你发现的结论。
③如图4,当动点D运动至等边△ABC边BA的延长线上时,其它作法与图3相同,猜想AF,BF′与AB在上题②中的结论是否仍然成立,若不成立,请给出你的结论并证明。
一、选择题
1、A
【解析】A
【分析】根据中心对称图形与轴对称图形的概念进行判断即可.
【详解】解:A.既是中心对称图形,也是轴对称图形,故此选项符合题意;
B.不是中心对称图形,也不是轴对称图形,故此选项不合题意;
C.不是中心对称图形,是轴对称图形,故此选项不合题意;
D.是中心对称图形,不是轴对称图形,故此选项不合题意;
故选:A.
【点睛】本题考查的是中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转度后与自身重合.
2、C
【解析】C
【分析】绝对值小于l的数也可以利用科学记数法表示,一般形式为与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.
【详解】解:将数据0.000029用科学记数法表示为:
故选:C.
【点睛】本题考查用科学记数法表示较小的数的一般形式为其中 n为由原数左边起第一个不为零的数字前面的0的个数所决定.
3、D
【解析】D
【分析】根据积的乘方与幂的乘方法则、合并同类项法则、单项式乘单项式乘法法则、单项式乘多项式乘法法则解决此题.
【详解】解:A.根据积的乘方与幂的乘方,(﹣2ab2)3=﹣8a3b6,故A不符合题意.
B.根据合并同类项法则,3ab+2b无法合并,故B不符合题意.
C.根据积的乘方以及单项式乘单项式的乘法法则,(﹣x2)•(﹣2x)3=﹣x2•(﹣8x3)=8x5,故C不符合题意.
D.根据整式的混合运算法则,2m(m2﹣3mn)=2m3﹣6m2n,故D符合题意.
故选:D.
【点睛】本题主要考查积的乘方与幂的乘方、合并同类项、单项式乘单项式、单项式乘多项式,熟练掌握积的乘方与幂的乘方法则、合并同类项法则、单项式乘单项式乘法法则、单项式乘多项式乘法法则是解决本题的关键.
4、C
【解析】C
【分析】根据二次根式的被开方数是非负数,分式的分母不为0解答即可.
【详解】解:∵代数式在实数范围内有意义,
∴x-1≥0,且x≠0
解得:x≥1.
故选:C.
【点睛】本题主要考查了二次根式有意义的条件,熟练掌握二次根式的被开方数是非负数是解题的关键.
5、C
【解析】C
【分析】根据因式分解的定义逐个判断即可.
【详解】解∶A、从左至右的变形属于整式乘法,不属于因式分解,故本选项不符合题意;
B、从左至右的变形属于整式乘法,不属于因式分解,故本选项不符合题意;
C、从左至右的变形是由多项式变成因式的乘积,属于因式分解,故本选项符合题意;
D、从左至右的变形中,右边最后不属于乘法运算,不属于因式分解,故本选项不符合题意;
故选∶C.
【点睛】本题考查了因式分解的定义,能熟记因式分解的定义(把一个多项式化成几个整式的积的形式,叫因式分解)是解此题的关键.
6、C
【解析】C
【分析】乙的分子由2-x变成了x-2,也就是分子乘了-1,而分母和分式本身的符号并没有发生变化,所以乙有错误.
【详解】解:乙的分子由2-x变成了x-2,也就是分子乘了-1,而分母和分式本身的符号并没有发生变化,所以乙有错误.
故选:C.
【点睛】本题考查了分式的基本性质,分式的乘除法法则,考核学生的计算能力,熟记分式的基本性质是解题的关键.
7、A
【解析】A
【分析】结合题意,根据全等三角形的判定性质,对各个选项逐一分析,即可得到答案.
【详解】∵AC=DE,不构成△ABC≌△ADE的条件
∴A符合题意;
∵BC=AE,
∴△ABC和△ADE中
∴
∴B不符合题意;
∵∠C=∠E
△ABC和△ADE中
∴
∴C不符合题意;
∠BAC=∠ADE,
△ABC和△ADE中
∴
∴D不符合题意.
故选:A.
【点睛】本题考查了全等三角形的知识;解题的关键是熟练掌握三角形全等的判定性质,从而完成求解.
8、D
【解析】D
【分析】先根据不经过第四象限,求出a的取值范围,然后求出分式方程的解,根据分式方程的解为整数结合分式有意义的条件求解即可.
【详解】解:∵不经过第四象限,
∴,
解得,
∵
∴,
∴
∴,
∵分式方程有整数解,
∴,,,
又∵分式要有意义,
∴,
∴,
∵,
∴,
∴或或
∴或或或,
∴满足条件的所有整数a的和=1+3+0+(-2)=2,
故选:D.
【点睛】本题主要考查了一次函数图象的性质,解分式方程,分式有意义的条件,解题的关键在于能够熟练掌握相关知识进行求解.
9、C
【解析】C
【分析】根据线段垂直平分线的性质得AE=BE=10cm,再根据等边对等角和三角形的外角性质求得∠AEC=30°,然后利用含30°角的直角三角形的性质求解即可.
【详解】解:∵DE垂直平分AB,BE=10cm,
∴AE=BE=10cm,
∴∠EAB=∠B=15°,
∴∠AEC=2∠B=30°,
在Rt△ACE中,∠ACE=90°,
∴AC= AE=5cm,
故选:C.
【点睛】本题考查线段垂直平分线的性质、等腰三角形的性质、三角形的外角性质、含30°角的直角三角形的性质,熟练掌握相关知识的联系与运用是解答的关键.
二、填空题
10、C
【解析】C
【分析】由图1可知,阴影部分面积a2﹣b2=2,图2可知,阴影部分面积(a+b)2﹣a2﹣b2=20,进而得到ab=10,由图3可知,阴影部分面积(2a+b)2﹣3a2﹣2b2=a2﹣b2+4ab=2+40=41、
【详解】解:设正方形A、B的边长分别为a、b,由图1可知,阴影部分面积a2﹣b2=2,
图2可知,阴影部分面积(a+b)2﹣a2﹣b2=20,
所以ab=10,
由图3可知,阴影部分面积为(2a+b)2﹣3a2﹣2b2=a2﹣b2+4ab=2+40=41、
故选:C.
【点睛】此题考查完全平方公式在几何图形中的应用,正确理解图形的构成,正确掌握完全平方公式是解题的关键.
11、
【分析】根据分式的意义可得到x﹣2≠0,即x≠2,根据题意分式值为0可知4x+3=0,由此求解即可.
【详解】解:∵分式的值为0,
∴,
解得,
故答案为:.
【点睛】本题考查了分式,本题的解题关键是牢记分式有意义的条件,检验分式的解是否为增根问题.
12、B
【解析】(3,0)或(-3,0)
【分析】根据关于坐标轴对称的点的特征可求得点B坐标,再利用等腰直角三角形的性质得OA、OC的长,即可求解.
【详解】解∶∵点A的坐标为(0,3),点B与点A关于x轴对称,
∴点B (0,-3),
∴OA=OB=3, .
∵点C在x轴上,△ABC为等腰直角三角形,
∴∠ACB=90°, AC=BC,
∴OC=OA=OB=3,
∴点C (3,0)或(-3,0),
故答案为∶ (3,0)或(-3,0) .
【点睛】本题考查了轴对称的性质,等腰直角三角形的性质,掌握等腰直角三角形的性质是本题的关键.
13、-1
【详解】根据得:,
即,
xyz=y2z+y-z,且yz-z=-1,
故,
故答案:-1.
14、
【分析】对所求的式子进行变形后,逆用积的乘方的法则运算即可.
【详解】解:
=
=
=
=
=
故答案为:.
【点睛】此题主要考查积的乘方,解题的关键是熟记积的乘方法则并逆用法则.
15、10
【分析】连接BD、OB,由折叠得OB=OD,根据等边三角形的性质求出BC,CD,当点B、O、C共线时,的周长最小,计算即得.
【详解】解:连接BD、OB,
由折叠得EF是BD的垂直平分线,
∴
【解析】10
【分析】连接BD、OB,由折叠得OB=OD,根据等边三角形的性质求出BC,CD,当点B、O、C共线时,的周长最小,计算即得.
【详解】解:连接BD、OB,
由折叠得EF是BD的垂直平分线,
∴OB=OD,
∵△ABC是等边三角形,AD=2,AC=6,
∴AC=BC=6,CD=AC-AD=6-2=4,
∴的周长=CD+OC+OD=4+OC+OB,
∴当点B、O、C共线时,的周长最小,最小值为4+BC=4+6=10,
故答案为:9、
.
【点睛】此题考查了轴对称的性质,三角形周长最小值,正确理解轴对称的性质及三点共线的性质是解题的关键.
16、【分析】利用相似多边形的对应角相等以及四边形内角和定理求得答案即可.
【详解】解:四边形∽四边形,,,,
,,
.
故答案为:.
【点睛】此题考查了相似多边形的性质,解题的关键是掌握相似多边形的对
【解析】
【分析】利用相似多边形的对应角相等以及四边形内角和定理求得答案即可.
【详解】解:四边形∽四边形,,,,
,,
.
故答案为:.
【点睛】此题考查了相似多边形的性质,解题的关键是掌握相似多边形的对应角相等.也考查了四边形内角和定理.
17、【分析】利用完全平方公式求出a+b的值,再根据S阴影部分=S△BCD−S△BEF−S正方形EFCG,列式计算即可.
【详解】解:∵a−b=2,,
∴,
又∵a>b>0,
∴a+b=,
则S阴影部分
【解析】
【分析】利用完全平方公式求出a+b的值,再根据S阴影部分=S△BCD−S△BEF−S正方形EFCG,列式计算即可.
【详解】解:∵a−b=2,,
∴,
又∵a>b>0,
∴a+b=,
则S阴影部分=S△BCD−S△BEF−S正方形EFCG
=
=
=
=
=,
故答案为:.
【点睛】本题考查完全平方公式的应用,用代数式表示图形中各个部分的面积是正确解答的前提.
18、2或
【分析】设运动时间为t秒,点Q的运动速度是vcm/s,则BP=2t cm,CQ=vt cm,CP=(10-2t)cm,求出BE=6cm,根据全等三角形的判定得出当BE=CP,BP=CQ或BE=
【解析】2或
【分析】设运动时间为t秒,点Q的运动速度是vcm/s,则BP=2t cm,CQ=vt cm,CP=(10-2t)cm,求出BE=6cm,根据全等三角形的判定得出当BE=CP,BP=CQ或BE=CQ,BP=CP时,△BPE与以C、P、Q三点所构成的三角形全等,再代入求出t、v即可.
【详解】设运动时间为t秒,点Q的运动速度是vcm/s,则BP=2t cm,CQ=vt cm,CP=(10-2t)cm,
∵E为AB的中点,AB=12cm,
∴BE=AE=6cm,
∵∠B=∠C,
∴要使△BPE与以C、P、Q三点所构成的三角形全等,必须BE=CP,BP=CQ或BE=CQ,BP=CP,
当BE=CP,BP=CQ时,6=10-2t,2t=vt,
解得:t=2,v=2,即点Q的运动速度是2cm/s,
当BE=CQ,BP=CP时,6=vt,2t=10-2t,
解得:t=,v=,即点Q的运动速度是cm/s,
故答案为2或
【点睛】本题考查了全等三角形的判定定理,能熟记全等三角形的判定定理是解此题的关键,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS,两直角三角形全等还有HL等.
三、解答题
19、(1)
(2)
【分析】(1)根据完全平方公式因式分解即可求解;
(2)根据平方差公式与提公因式法因式分解即可求解.
(1)
=
=
(2)
=
=
=
【点睛】本题考查了因式分
【解析】(1)
(2)
【分析】(1)根据完全平方公式因式分解即可求解;
(2)根据平方差公式与提公因式法因式分解即可求解.
(1)
=
=
(2)
=
=
=
【点睛】本题考查了因式分解,掌握因式分解的方法是解题的关键.
20、,
【分析】先通分,计算括号内分式的减法,利用完全平方公式等进行约分、化简,再将分式的除法转化为乘法,化简,最后由分式有意义的条件解得,代入求解即可.
【详解】解:
当时,即
原式
.
【解析】,
【分析】先通分,计算括号内分式的减法,利用完全平方公式等进行约分、化简,再将分式的除法转化为乘法,化简,最后由分式有意义的条件解得,代入求解即可.
【详解】解:
当时,即
原式
.
【点睛】本题考查分式的混合运算,涉及完全平方公式、分式有意义的条件等知识,是重要考点,掌握相关知识是解题关键.
21、见解析
【分析】先证△ABC≌△EFD(SSS),得出∠B=∠F,再由平行线的判定即可证明.
【详解】证明:在△ABC和△EFD中,
,
∴△ABC≌△EFD(SSS),
∴∠B=∠F,
∴AB∥F
【解析】见解析
【分析】先证△ABC≌△EFD(SSS),得出∠B=∠F,再由平行线的判定即可证明.
【详解】证明:在△ABC和△EFD中,
,
∴△ABC≌△EFD(SSS),
∴∠B=∠F,
∴AB∥FE.
【点睛】本题考查了全等三角形的判定与性质、平行线的判定等知识;证明△ABC≌△EFD是解题的关键.
22、(1)110°
(2),理由见解析
(3),理由见解析
【分析】(1)利用三角形内角和和角平分线性质,可求得角度;
(2)将定角转化为动角,利用三角形内角和和角平分线性质,可求得角度的关系;
(3)
【解析】(1)110°
(2),理由见解析
(3),理由见解析
【分析】(1)利用三角形内角和和角平分线性质,可求得角度;
(2)将定角转化为动角,利用三角形内角和和角平分线性质,可求得角度的关系;
(3)在(2)的基础结论上,通过角平分线性质可求证FB∥OD,然后角的关系就能够表示出来.
(1)
∵,
∴,
∵角平分线、分别平分、,
∴,,
∴,
在中,
故答案为:110°,
(2)
∵,
∴,
∵、是角平分线,
∴,
∴,
(3)
由图可知
∵,
∴,
∴,
∴,
∴,
∴.
【点睛】此题考查了双角平分线模型,利用三角形内角和定理以及角平分线性质,推理出各个角之间的关系是本题的关键.
23、(1)的解是,,验证见解析
(2),
【分析】(1)认真审题,找到规律:的解为,,分别代入验证即可;
(2)据规律解题即可.
(1)
解:猜想 (m≠0)的解是,.
验证:当x=c时,方程左边=c+
【解析】(1)的解是,,验证见解析
(2),
【分析】(1)认真审题,找到规律:的解为,,分别代入验证即可;
(2)据规律解题即可.
(1)
解:猜想 (m≠0)的解是,.
验证:当x=c时,方程左边=c+,方程右边=c+,
∴方程成立;
当x=时,方程左边=+c,方程右边=c+,
∴方程成立;
∴ (m≠0)的解是,;
(2)
解:由得,
∴x-1=a-1,,
∴,.
经检验:它们都是原方程的解.
【点睛】本题考查了解分式方程,解此题的关键是理解题意,认真审题,寻找规律: (m≠0)的解是,.
24、(1)-11(2)63.5(3)a=-3(4)2020、
【分析】(1)求一次项系数,用每个括号中一次项的系数分别与另外两个括号中的常数项相乘,最后积相加即可得出结论.
(2)求二次项系数,还有未知
【解析】(1)-11(2)63.5(3)a=-3(4)2020、
【分析】(1)求一次项系数,用每个括号中一次项的系数分别与另外两个括号中的常数项相乘,最后积相加即可得出结论.
(2)求二次项系数,还有未知数的项有x、2x、5x,选出其中两个与另一个括号内的常数项相乘,最后积相加即可得出结论.
(3)先根据(1)(2)所求方法求出一次项系数,然后列出等式求出a的值.
(4)根据前三问的规律即可计算出第四问的值.
【详解】解:(1)由题意可得(x+2)(3x+1)(5x-3)一次项系数是:1×1×(-3)+3×2×(-3)+5×2×1=-10、
(2)由题意可得( x+6)(2x+3)(5x-4) 二次项系数是:
.
(3)由题意可得(x2+x+1)(x2-3x+a)(2x-1)一次项系数是:
1×a×(-1)+(-3)×1×(-1)+2×1×a = a+3=0
∴a=-2、
(4)通过题干以及前三问可知:一次项系数是每个多项式的一次项分别乘以其他多项式常数项然后结果相加可得.
所以(x+1)2021一次项系数是:a2020=2021×1=2020、
故答案为:(1)-11(2)63.5(3)a=-3(4)2020、
【点睛】本题考查多项式乘多项式,观察题干,得出规律是关键.
25、①成立,证明见详解;②AF+BF′=AB,证明见详解;③不成立,AF=AB+BF′,证明见详解.
【分析】类比猜想:①通过证明△BCD≌△ACF,即可证明AF=BD;
深入探究:②AF+BF′=AB
【解析】①成立,证明见详解;②AF+BF′=AB,证明见详解;③不成立,AF=AB+BF′,证明见详解.
【分析】类比猜想:①通过证明△BCD≌△ACF,即可证明AF=BD;
深入探究:②AF+BF′=AB,利用全等三角形△BCD≌△ACF(SAS)的对应边BD=AF;同理△BCF′≌△ACD(SAS),则BF′=AD,所以AF+BF′=AB;
③结论不成立.新的结论是AF=AB+BF′;通过证明△BCF′≌△ACD(SAS),则BF′=AD(全等三角形的对应边相等);再结合(2)中的结论即可证得AF=AB+BF′.
【详解】解:类比猜想:①如图2中,
∵△ABC是等边三角形(已知),
∴BC=AC,∠BCA=60°(等边三角形的性质);
同理知,DC=CF,∠DCF=60°;
∴∠BCA+∠DCA=∠DCF+∠DCA,即∠BCD=∠ACF;
在△BCD和△ACF中,
∴△BCD≌△ACF(SAS),
∴BD=AF(全等三角形的对应边相等);
深入探究:②如图示
AF+BF′=AB;
证明如下:由①条件可知:∠BCA-∠DCA=∠DCF-∠DCA,即∠BCD=∠ACF,
∴同理可证△BCD≌△ACF(SAS),则BD=AF;
同理△BCF′≌△ACD(SAS),则BF′=AD,
∴AF+BF′=BD+AD=AB;
③结论不成立.新的结论是AF=AB+BF′;
如图示:
证明如下:
∵等边△DCF和等边△DCF′,由①同理可知:
在△BCF′和△ACD中,
∴△BCF′≌△ACD(SAS),
∴BF′=AD(全等三角形的对应边相等);
又由②知,AF=BD;
∴AF=BD=AB+AD=AB+BF′,即AF=AB+BF′.
【点睛】本题属于三角形综合题,考查了等边三角形的性质,全等三角形的判定和性质等知识,解题的关键是正确寻找全等三角形解决问题.
展开阅读全文