收藏 分销(赏)

宜昌市七年级下册数学期末压轴难题试卷(带答案).doc

上传人:天**** 文档编号:4738204 上传时间:2024-10-11 格式:DOC 页数:24 大小:581.54KB 下载积分:10 金币
下载 相关 举报
宜昌市七年级下册数学期末压轴难题试卷(带答案).doc_第1页
第1页 / 共24页
宜昌市七年级下册数学期末压轴难题试卷(带答案).doc_第2页
第2页 / 共24页


点击查看更多>>
资源描述
宜昌市七年级下册数学期末压轴难题试卷(带答案)-百度文库 一、选择题 1.下列各式中,正确的是() A.=±2 B.±=4 C.=-4 D.=-2 2.下列图形中,能将其中一个图形平移得到另一个图形的是 ( ) A. B. C. D. 3.在平面直角坐标系中,点位于( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限 4.有下列四个命题:①对顶角相等;②同位角相等;③两点之间,直线最短;④连接直线外一点与直线上各点的所有线段中,垂线段最短.其中是真命题的个数有( ) A.0个 B.1个 C.2个. D.3个 5.如图,直线,三角板的直角顶点在直线上,已知,则等于( ). A.25° B.55° C.65° D.75° 6.按如图所示的程序计算,若开始输入的x的值是64,则输出的y的值是( ) A. B. C.2 D.3 7.直角三角板与两边平行的纸条如图所示放置,下列结论不一定正确的是(  ) A. B. C. D. 8.如图所示,平面直角坐标系中,轴负半轴有一点,点先向上平移1个单位至,接着又向右平移1个单位至点,然后再向上平移1个单位至点,向右平移1个单位至点,照此规律平移下去,点平移至点时,点的坐标为( ) A. B. C. D. 二、填空题 9.如果和互为相反数,那么________. 10.点A(-2,1)关于x轴对称的点的坐标是____________________. 11.如图中,,,AD、AF分别是的角平分线和高,________. 12.如图,直线AB∥CD,OA⊥OB,若∠1=140°,则∠2=_____度. 13.如图, 把一张长方形纸片ABCD沿EF折叠后ED与BC的交点为G,D、C分别在M 、N的位置上,若∠EFG=54°,则∠EGB=_______. 14.新定义一种运算,其法则为,则__________ 15.在平面直角坐标系中,已知三点,其中a,b满足关系式,若在第二象限内有一点,使四边形的面积与三角形的面积相等,则点P的坐标为________. 16.如图:在平面直角坐标系中,已知P1(﹣1,0),P2(﹣1,﹣1),P3(1,﹣1),P4(1,1),P5(﹣2,1),P6(﹣2,﹣2)…,依次扩展下去,则点P2021的坐标为 _____________. 三、解答题 17.(1) (2) 18.求下列各式中的x: (1); (2); (3). 19.已知一个角的两边与另一个角的两边分别平行,结合图1,探索这两个角之间的关系. (1)如图1,已知与中,,,与相交于点.问:与有何关系? ①请完成下面的推理过程. 理由:,     . ,   .   . ②结论:与关系是   . (2)如图2,已知,,则与有何关系?请直接写出你的结论. (3)由(1)、(2)你得出的结论是:如果一个角的两边与另一个角的两边分别平行,那么   . 20.如图,三角形ABC在平面直角坐标系中, (1)请写出三角形ABC各点的坐标; (2)将 三角形ABC经过平移后得到三角形A1B1C1,若三角形ABC中任意一点M(a,b)与三角形A1B1C1的对应点的坐标为M1(a-1,b+2),写出A1B1C1的坐标,并画出平移后的图形; (3)求出三角形ABC的面积. 21.已知:a是的小数部分,b是的小数部分. (1)求a、b的值; (2)求4a+4b+5的平方根. 二十二、解答题 22.张华想用一块面积为400cm2的正方形纸片,沿着边的方向剪出一块面积为300cm2的长方形纸片,使它的长宽之比为3:2.他不知能否裁得出来,正在发愁.李明见了说:“别发愁,一定能用一块面积大的纸片裁出一块面积小的纸片.”你同意李明的说法吗?张华能用这块纸片裁出符合要求的纸片吗? 二十三、解答题 23.已知:AB∥CD,截线MN分别交AB、CD于点M、N. (1)如图①,点B在线段MN上,设∠EBM=α°,∠DNM=β°,且满足+(β﹣60)2=0,求∠BEM的度数; (2)如图②,在(1)的条件下,射线DF平分∠CDE,且交线段BE的延长线于点F;请写出∠DEF与∠CDF之间的数量关系,并说明理由; (3)如图③,当点P在射线NT上运动时,∠DCP与∠BMT的平分线交于点Q,则∠Q与∠CPM的比值为   (直接写出答案). 24.已知点A,B,O在一条直线上,以点O为端点在直线AB的同一侧作射线,,使. (1)如图①,若平分,求的度数; (2)如图②,将绕点O按逆时针方向转动到某个位置时,使得所在射线把分成两个角. ①若,求的度数; ②若(n为正整数),直接用含n的代数式表示. 25.如图,已知直线a∥b,∠ABC=100°,BD平分∠ABC交直线a于点D,线段EF在线段AB的左侧,线段EF沿射线AD的方向平移,在平移的过程中BD所在的直线与EF所在的直线交于点P.问∠1的度数与∠EPB的度数又怎样的关系? (特殊化) (1)当∠1=40°,交点P在直线a、直线b之间,求∠EPB的度数; (2)当∠1=70°,求∠EPB的度数; (一般化) (3)当∠1=n°,求∠EPB的度数(直接用含n的代数式表示). 26.问题情境:如图1,AB∥CD,∠PAB=130°,∠PCD=120°.求∠APC度数. 小明的思路是:如图2,过P作PE∥AB,通过平行线性质,可得∠APC=50°+60°=110°. 问题迁移: (1)如图3,AD∥BC,点P在射线OM上运动,当点P在A、B两点之间运动时,∠ADP=∠α,∠BCP=∠β.∠CPD、∠α、∠β之间有何数量关系?请说明理由; (2)在(1)的条件下,如果点P在A、B两点外侧运动时(点P与点A、B、O三点不重合),请你直接写出∠CPD、∠α、∠β间的数量关系. 【参考答案】 一、选择题 1.D 解析:D 【分析】 依据算术平方根、平方根、立方根的性质求解即可. 【详解】 解:A、,故选项错误; B、,故选项错误; C、,故选项错误; D、,故选项正确; 故选D. 【点睛】 本题主要考查的是立方根、平方根、算术平方根的定义,熟练掌握相关知识是解题的关键. 2.A 【分析】 根据平移的性质,结合图形对选项进行一一分析,选出正确答案. 【详解】 解:A、图形的形状和大小没有变化,符合平移的性质,属于平移得到; B、图形由轴对称得到,不属于平移得到,不属于平移 解析:A 【分析】 根据平移的性质,结合图形对选项进行一一分析,选出正确答案. 【详解】 解:A、图形的形状和大小没有变化,符合平移的性质,属于平移得到; B、图形由轴对称得到,不属于平移得到,不属于平移得到; C、图形由旋转变换得到,不符合平移的性质,不属于平移得到; D、图形的大小发生变化,不属于平移得到; 故选:A. 【点睛】 本题考查平移的基本性质,平移不改变图形的形状、大小和方向.掌握平移的性质是解题的关键. 3.B 【分析】 根据平面直角坐标系的四个象限内的坐标特征回答即可. 【详解】 解:解:在平面直角坐标系中,点P(−2,1)位于第二象限, 故选:B. 【点睛】 本题考查了点的坐标,横坐标小于零,纵坐标大于零的点在第二象限. 4.C 【分析】 根据对顶角的性质、线段的性质、平行线的性质、垂线段的性质进行解答即可. 【详解】 解:①对顶角相等,原命题是真命题; ②两直线平行,同位角相等,不是真命题; ③两点之间,线段最短,原命题不是真命题; ④直线外一点与直线上各点连接的所有线段中,垂线段最短,原命题是真命题. 故选:C. 【点睛】 此题考查了命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理. 5.C 【分析】 利用平行线的性质,可证得∠2=∠3,利用已知可证得∠1+∠3=90°,求出∠3的度数,进而求出∠2的度数. 【详解】 解:如图 ∵a//b ∴∠2=∠3, ∵∠1+∠3=180°-90°=90° ∴∠3=90°-∠1=90°-25°=65° ∴∠2=65°. 故选C. 【点睛】 本题主要考查了平行线的性质,灵活运用“两直线平行、同位角相等”是解答本题的关键. 6.A 【分析】 根据计算程序图计算即可. 【详解】 解:∵当x=64时,,,2是有理数, ∴当x=2时,算术平方根为是无理数, ∴y=, 故选:A. 【点睛】 此题考查计算程序的应用,正确理解计算程序图的计算步骤,会正确计算数的算术平方根及立方根,能正确判断有理数及无理数是解题的关键. 7.D 【分析】 直接利用平行线性质解题即可 【详解】 解:∵直尺的两边互相平行, ∴∠1=∠2,∠3=∠4, ∵三角板的直角顶点在直尺上, ∴∠2+∠4=90°, ∴A,B,C正确. 故选D. 【点睛】 本题考查平行线的基本性质,基础知识扎实是解题关键 8.C 【分析】 由题意,A1(-1,1),A3(0,2),A5(1,3),A7(2,4),得出规律,利用规律解决问题即可. 【详解】 由题意,A1(-1,1),A3(0,2),A5(1,3),A7(2 解析:C 【分析】 由题意,A1(-1,1),A3(0,2),A5(1,3),A7(2,4),得出规律,利用规律解决问题即可. 【详解】 由题意,A1(-1,1),A3(0,2),A5(1,3),A7(2,4),……,A2n-1(-2+n,n), ∵ , ∴A2021(1009,1011), 故选:C. 【点睛】 本题考查坐标与图形变化一平移,解题的关键是学会探究规律的方法,属于中考常考题型. 二、填空题 9.-2 【分析】 利用相反数的性质列出方程,求出方程的解即可得到x与y的值,进而得出答案. 【详解】 解:∵和|y-2|互为相反数, ∴, ∴x+1=0,y-2=0, 解得:x=-1,y=2, ∴xy 解析:-2 【分析】 利用相反数的性质列出方程,求出方程的解即可得到x与y的值,进而得出答案. 【详解】 解:∵和|y-2|互为相反数, ∴, ∴x+1=0,y-2=0, 解得:x=-1,y=2, ∴xy=-1×2=-2 故答案为:-2. 【点睛】 本题考查了绝对值和平方数的非负性.互为相反数的两个数相加等于0,和|y-2|都是非负数,所以这个数都是0. 10.(-2,-1) 【分析】 根据“关于x轴对称的点,横坐标相同,纵坐标互为相反数”解答. 【详解】 解:点(-2,1)关于x轴对称的点的坐标是(-2,-1), 故答案为:(-2,-1). 【点睛】 本 解析:(-2,-1) 【分析】 根据“关于x轴对称的点,横坐标相同,纵坐标互为相反数”解答. 【详解】 解:点(-2,1)关于x轴对称的点的坐标是(-2,-1), 故答案为:(-2,-1). 【点睛】 本题考查了关于x轴、y轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数. 11.【分析】 根据三角形内角和定理及角平分线的性质求出∠BAD度数,再由三角形内角与外角的性质可求出∠ADF的度数,由AF⊥BC可求出∠AFD=90°,再由三角形的内角和定理即可解答. 【详解】 ∵A 解析: 【分析】 根据三角形内角和定理及角平分线的性质求出∠BAD度数,再由三角形内角与外角的性质可求出∠ADF的度数,由AF⊥BC可求出∠AFD=90°,再由三角形的内角和定理即可解答. 【详解】 ∵AF是的高,∴, 在中,, ∴. 又∵在中,,, ∴, 又∵AD平分, ∴, ∴ . 故答案为:. 【点睛】 本题考查了三角形内角和定理、三角形的高线、及三角形的角平分线等知识,难度中等. 12.50 【分析】 先根据垂直的定义得出∠O=90°,再由三角形外角的性质得出∠3=∠1﹣∠O=50°,然后根据平行线的性质可求∠2. 【详解】 ∵OA⊥OB, ∴∠O=90°, ∵∠1=∠3+∠O=1 解析:50 【分析】 先根据垂直的定义得出∠O=90°,再由三角形外角的性质得出∠3=∠1﹣∠O=50°,然后根据平行线的性质可求∠2. 【详解】 ∵OA⊥OB, ∴∠O=90°, ∵∠1=∠3+∠O=140°, ∴∠3=∠1﹣∠O=140°﹣90°=50°, ∵AB∥CD, ∴∠2=∠3=50°, 故答案为:50. 【点睛】 此题主要考查三角形外角的性质以及平行线的性质,熟练掌握,即可解题. 13.108° 【分析】 由折叠的性质可得:∠DEF=∠GEF,根据平行线的性质:两直线平行,内错角相等可得:∠DEF=∠EFG=54°,从而得到∠GEF=54°,根据平角的定义即可求得∠1,再由平行线的 解析:108° 【分析】 由折叠的性质可得:∠DEF=∠GEF,根据平行线的性质:两直线平行,内错角相等可得:∠DEF=∠EFG=54°,从而得到∠GEF=54°,根据平角的定义即可求得∠1,再由平行线的性质求得∠EGB. 【详解】 解:∵AD∥BC,∠EFG=54°, ∴∠DEF=∠EFG=54°,∠1+∠2=180°, 由折叠的性质可得:∠GEF=∠DEF=54°, ∴∠1=180°-∠GEF-∠DEF=180°-54°-54°=72°, ∴∠EGB=180°-∠1=108°. 故答案为:108°. 【点睛】 此题主要考查折叠的性质,平行线的性质和平角的定义,解决问题的关键是根据折叠的方法找准对应角,求出∠GEF的度数. 14.【分析】 按照题干定义的运算法则,列出算式,再按照同底幂除法运算法则计算可得. 【详解】 故答案为: 【点睛】 本题考查定义新运算,解题关键是根据题干定义的运算规则,转化为我们熟知的形式进行求解 解析: 【分析】 按照题干定义的运算法则,列出算式,再按照同底幂除法运算法则计算可得. 【详解】 故答案为: 【点睛】 本题考查定义新运算,解题关键是根据题干定义的运算规则,转化为我们熟知的形式进行求解. 15.(-4,1) 【分析】 根据非负数的性质分别求出a、b,根据三角形的面积公式列式计算得到答案. 【详解】 解:∵, ∴a=3,b=4, ∴A(0,3),B(4,0),C(4,6), ∴△ABC的面积 解析:(-4,1) 【分析】 根据非负数的性质分别求出a、b,根据三角形的面积公式列式计算得到答案. 【详解】 解:∵, ∴a=3,b=4, ∴A(0,3),B(4,0),C(4,6), ∴△ABC的面积=×6×4=12, 四边形ABOP的面积=△AOP的面积+△AOB的面积=×3×(-m)+×3×4=6-m, 由题意得,6-m=12, 解得,m=-4, ∴点P的坐标为(-4,1), 故答案为:(-4,1). 【点睛】 本题考查的是坐标与图形性质,非负数的性质,掌握点的坐标与图形的关系是解题的关键. 16.(﹣506,505) 【分析】 根据各个点的位置关系,可得出下标为4的倍数的点在第一象限,被4除余1的点在第二象限,被4除余2的点在D第三象限,被4除余3的点在第四象限,点P2021的在第二象限,且 解析:(﹣506,505) 【分析】 根据各个点的位置关系,可得出下标为4的倍数的点在第一象限,被4除余1的点在第二象限,被4除余2的点在D第三象限,被4除余3的点在第四象限,点P2021的在第二象限,且纵坐标=2020÷4,再根据第二项象限点的规律即可得出结论. 【详解】 解:∵P1(﹣1,0),P2(﹣1,﹣1),P3(1,﹣1),P4(1,1),P5(﹣2,1),P6(﹣2,﹣2)…, ∴下标为4的倍数的点在第一象限,被4除余1的点在第二象限,被4除余2的点在第三象限,被4除余3的点在第四象限, ∵2021÷4=505…1, ∴点P2021在第二象限, ∵点P5(﹣2,1),点P9(﹣3,2),点P13(﹣4,3), ∴点P2021(﹣506,505), 故答案为:(﹣506,505). 【点睛】 本题考查了规律型:点的坐标,是一个阅读理解,猜想规律的题目,解答此题的关键是首先确定点所在的大致位置,该位置处点的规律,然后就可以进一步推得点的坐标. 三、解答题 17.(1);(2). 【分析】 (1)先求算术平方根,再计算乘法,后加减即可得到答案; (2)先求立方根,算术平方根,再计算加减即可得到答案. 【详解】 解:(1) (2) 【点睛】 解析:(1);(2). 【分析】 (1)先求算术平方根,再计算乘法,后加减即可得到答案; (2)先求立方根,算术平方根,再计算加减即可得到答案. 【详解】 解:(1) (2) 【点睛】 本题考查的是实数的加减运算,考查了求一个数的算术平方根,立方根,掌握以上知识是解题的关键. 18.(1);(2)1;(3)-1. 【分析】 (1)根据立方根的定义解方程即可; (2)根据立方根的定义解方程即可; (3)根据立方根的定义解方程即可. 【详解】 解:(1), ∴ , ∴, ∴; (2 解析:(1);(2)1;(3)-1. 【分析】 (1)根据立方根的定义解方程即可; (2)根据立方根的定义解方程即可; (3)根据立方根的定义解方程即可. 【详解】 解:(1), ∴ , ∴, ∴; (2) ∴ ∴ ∴; (3), ∴, ∴, ∴. 【点睛】 本题考查了利用立方根的含义解方程,熟知立方根的定义是解决问题的关键. 19.(1)①180°;两直线平行,同旁内角互补;两直线平行,同位角相等;180°;②互补;(2)(相等);(3)这两个角相等或互补. 【分析】 (1)如图1,根据,,即可得与的关系; (2)如图2,根据 解析:(1)①180°;两直线平行,同旁内角互补;两直线平行,同位角相等;180°;②互补;(2)(相等);(3)这两个角相等或互补. 【分析】 (1)如图1,根据,,即可得与的关系; (2)如图2,根据,,即可得与的关系; (3)由(1)(2)即可得出结论. 【详解】 解:(1)①理由:, (两直线平行,同旁内角互补), , (两直线平行,同位角相等), . ②结论:与关系是互补. 故答案为:①;两直线平行,同旁内角互补;两直线平行,同位角相等;;②相等. (2),理由如下: , , , , . (3)由(1)、(2)你得出的结论是:如果一个角的两边与另一个角的两边分别平行,那么这两个角互补或相等, 故答案为:这两个角互补或相等. 【点睛】 本题考查了平行线的性质,解题的关键是熟练掌握平行线的性质定理. 20.(1)A(-2,-2),B(3,1),C(0,2);(2)A1(-3,0),B1(2,3),C1(-1,4),图见详解;(3)7 【分析】 (1)利用点的坐标的表示方法分别写出点A、B、C的坐标; 解析:(1)A(-2,-2),B(3,1),C(0,2);(2)A1(-3,0),B1(2,3),C1(-1,4),图见详解;(3)7 【分析】 (1)利用点的坐标的表示方法分别写出点A、B、C的坐标; (2)先利用点的坐标平移的规律写出点A、B、C的对应点A1、B1、C1的坐标,然后描点即可得到△A1B1C1; (3)利用一个矩形的面积分别减去三个三角形的面积计算三角形ABC的面积. 【详解】 解:(1)如图观察可得:A(-2,-2),B(3,1),C(0,2); (2)根据三角形ABC中任意一点M(a,b)与三角形A1B1C1的对应点的坐标为M1(a-1,b+2)可知,△ABC向左平移一个单位长度,向上平移两个单位长度, 平移后坐标为:A1(-3,0),B1(2,3),C1(-1,4), 平移后的△A1B1C1如下图所示: ; (3). 【点睛】 本题考查了作图-平移变换:确定平移后图形的基本要素有两个:平移方向、平移距离.作图时要先找到图形的关键点,分别把这几个关键点按照平移的方向和距离确定对应点后,再顺次连接对应点即可得到平移后的图形. 21.(1)a=﹣3,b=4﹣;(2)±3. 【分析】 (1)根据3<<4,即可求出a、b的值; (2)把a,b代入代数式计算求值,再求平方根即可. 【详解】 解:(1)∵3<<4, ∴11<8+<12, 解析:(1)a=﹣3,b=4﹣;(2)±3. 【分析】 (1)根据3<<4,即可求出a、b的值; (2)把a,b代入代数式计算求值,再求平方根即可. 【详解】 解:(1)∵3<<4, ∴11<8+<12,4<8﹣<5, ∵a是的小数部分,b是的小数部分, ∴a=8+﹣11=﹣3,b=8﹣﹣4=4﹣. (2), ∴4a+4b+5的平方根为:=±3. 【点睛】 本题考查了无理数的估算,求一个数的平方根等知识,能熟练估算的近似值,进而求出a、b的值是解题关键. 二十二、解答题 22.不同意,理由见解析. 【详解】 试题分析:设面积为300平方厘米的长方形的长宽分为3x厘米,2x厘米,则3x•2x=300,x2=50,解得x=,而面积为400平方厘米的正方形的边长为20厘米,由于 解析:不同意,理由见解析. 【详解】 试题分析:设面积为300平方厘米的长方形的长宽分为3x厘米,2x厘米,则3x•2x=300,x2=50,解得x=,而面积为400平方厘米的正方形的边长为20厘米,由于>20,所以用一块面积为400平方厘米的正方形纸片,沿着边的方向裁不出一块面积为300平方厘米的长方形纸片,使它的长宽之比为3:2. 试题解析:解:不同意李明的说法.设长方形纸片的长为3x (x>0)cm,则宽为2x cm,依题意得:3x•2x=300,6x2=300,x2=50,∵x>0,∴x==,∴长方形纸片的长为 cm,∵50>49,∴>7,∴>21,即长方形纸片的长大于20cm,由正方形纸片的面积为400 cm2,可知其边长为20cm,∴长方形纸片的长大于正方形纸片的边长. 答:李明不能用这块纸片裁出符合要求的长方形纸片. 点睛:本题考查了算术平方根的定义:一个正数的正的平方根叫这个数的算术平方根;0的算术平方根为0.也考查了估算无理数的大小. 二十三、解答题 23.(1)30°;(2)∠DEF+2∠CDF=150°,理由见解析;(3) 【分析】 (1)由非负性可求α,β的值,由平行线的性质和外角性质可求解; (2)过点E作直线EH∥AB,由角平分线的性质和平行 解析:(1)30°;(2)∠DEF+2∠CDF=150°,理由见解析;(3) 【分析】 (1)由非负性可求α,β的值,由平行线的性质和外角性质可求解; (2)过点E作直线EH∥AB,由角平分线的性质和平行线的性质可求∠DEF=180°﹣30°﹣2x°=150°﹣2x°,由角的数量可求解; (3)由平行线的性质和外角性质可求∠PMB=2∠Q+∠PCD,∠CPM=2∠Q,即可求解. 【详解】 解:(1)∵+(β﹣60)2=0, ∴α=30,β=60, ∵AB∥CD, ∴∠AMN=∠MND=60°, ∵∠AMN=∠B+∠BEM=60°, ∴∠BEM=60°﹣30°=30°; (2)∠DEF+2∠CDF=150°. 理由如下:过点E作直线EH∥AB, ∵DF平分∠CDE, ∴设∠CDF=∠EDF=x°; ∵EH∥AB, ∴∠DEH=∠EDC=2x°, ∴∠DEF=180°﹣30°﹣2x°=150°﹣2x°; ∴∠DEF=150°﹣2∠CDF, 即∠DEF+2∠CDF=150°; (3)如图3,设MQ与CD交于点E, ∵MQ平分∠BMT,QC平分∠DCP, ∴∠BMT=2∠PMQ,∠DCP=2∠DCQ, ∵AB∥CD, ∴∠BME=∠MEC,∠BMP=∠PND, ∵∠MEC=∠Q+∠DCQ, ∴2∠MEC=2∠Q+2∠DCQ, ∴∠PMB=2∠Q+∠PCD, ∵∠PND=∠PCD+∠CPM=∠PMB, ∴∠CPM=2∠Q, ∴∠Q与∠CPM的比值为, 故答案为:. 【点睛】 本题主要考查了平行线的性质、角平分线的性质,准确计算是解题的关键. 24.(1);(2)①;②. 【分析】 (1)依据角平分线的定义可求得,再依据角的和差依次可求得和,根据邻补角的性质可求得结论; (2)①根据角相等和角的和差可得∠EOC=∠BOD,再根据比例关系可得,最 解析:(1);(2)①;②. 【分析】 (1)依据角平分线的定义可求得,再依据角的和差依次可求得和,根据邻补角的性质可求得结论; (2)①根据角相等和角的和差可得∠EOC=∠BOD,再根据比例关系可得,最后依据角的和差和邻补角的性质可求得结论; ②根据角相等和角的和差可得∠EOC=∠BOD,再根据比例关系可得,最后依据角的和差和邻补角的性质可求得结论. 【详解】 解:(1)∵平分,, ∴, ∴, ∴, ∴; (2)①∵, ∴∠EOC+∠COD=∠BOD+∠COD, ∴∠EOC=∠BOD, ∵,, ∴, ∴, ∴, ∴; ②∵, ∴∠EOC+∠COD=∠BOD+∠COD, ∴∠EOC=∠BOD, ∵,, ∴, ∴, ∴, ∴. 【点睛】 本题考查邻补角的计算,角的和差,角平分线的有关计算.能正确识图,利用角的和差求得相应角的度数是解题关键. 25.(1)∠EPB=170°;(2)①当交点P在直线b的下方时:∠EPB=20°,②当交点P在直线a,b之间时:∠EPB=160°,③当交点P在直线a的上方时:∠EPB=∠1﹣50°=20°;(3)①当 解析:(1)∠EPB=170°;(2)①当交点P在直线b的下方时:∠EPB=20°,②当交点P在直线a,b之间时:∠EPB=160°,③当交点P在直线a的上方时:∠EPB=∠1﹣50°=20°;(3)①当交点P在直线a,b之间时:∠EPB=180°﹣|n°﹣50°|;②当交点P在直线a上方或直线b下方时:∠EPB=|n°﹣50°|. 【分析】 (1)利用外角和角平分线的性质直接可求解; (2)分三种情况讨论:①当交点P在直线b的下方时;②当交点P在直线a,b之间时;③当交点P在直线a的上方时;分别画出图形求解; (3)结合(2)的探究,分两种情况得到结论:①当交点P在直线a,b之间时;②当交点P在直线a上方或直线b下方时; 【详解】 解:(1)∵BD平分∠ABC, ∴∠ABD=∠DBC=∠ABC=50°, ∵∠EPB是△PFB的外角, ∴∠EPB=∠PFB+∠PBF=∠1+(180°﹣50°)=170°; (2)①当交点P在直线b的下方时: ∠EPB=∠1﹣50°=20°; ②当交点P在直线a,b之间时: ∠EPB=50°+(180°﹣∠1)=160°; ③当交点P在直线a的上方时: ∠EPB=∠1﹣50°=20°; (3)①当交点P在直线a,b之间时:∠EPB=180°﹣|n°﹣50°|; ②当交点P在直线a上方或直线b下方时:∠EPB=|n°﹣50°|; 【点睛】 考查知识点:平行线的性质;三角形外角性质.根据动点P的位置,分类画图,结合图形求解是解决本题的关键.数形结合思想的运用是解题的突破口. 26.(1),理由见解析; (2)当点P在B、O两点之间时,; 当点P在射线AM上时,. 【分析】 (1)过P作PE∥AD交CD于E,推出AD∥PE∥BC,根据平行线的性质得出∠α=∠DPE,∠β=∠C 解析:(1),理由见解析; (2)当点P在B、O两点之间时,; 当点P在射线AM上时,. 【分析】 (1)过P作PE∥AD交CD于E,推出AD∥PE∥BC,根据平行线的性质得出∠α=∠DPE,∠β=∠CPE,即可得出答案; (2)分两种情况:①点P在A、M两点之间,②点P在B、O两点之间,分别画出图形,根据平行线的性质得出∠α=∠DPE,∠β=∠CPE,即可得出结论. 【详解】 解:(1)∠CPD=∠α+∠β,理由如下: 如图,过P作PE∥AD交CD于E. ∵AD∥BC, ∴AD∥PE∥BC, ∴∠α=∠DPE,∠β=∠CPE, ∴∠CPD=∠DPE+∠CPE=∠α+∠β. (2)当点P在A、M两点之间时,∠CPD=∠β-∠α. 理由:如图,过P作PE∥AD交CD于E. ∵AD∥BC, ∴AD∥PE∥BC, ∴∠α=∠DPE,∠β=∠CPE, ∴∠CPD=∠CPE-∠DPE=∠β-∠α; 当点P在B、O两点之间时,∠CPD=∠α-∠β. 理由:如图,过P作PE∥AD交CD于E. ∵AD∥BC, ∴AD∥PE∥BC, ∴∠α=∠DPE,∠β=∠CPE, ∴∠CPD=∠DPE-∠CPE=∠α-∠β. 【点睛】 本题考查了平行线的性质的运用,主要考核了学生的推理能力,解决问题的关键是作平行线构造内错角,利用平行线的性质进行推导.解题时注意:问题(2)也可以运用三角形外角性质来解决.
展开阅读全文

开通  VIP会员、SVIP会员  优惠大
下载10份以上建议开通VIP会员
下载20份以上建议开通SVIP会员


开通VIP      成为共赢上传

当前位置:首页 > 教育专区 > 初中数学

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4009-655-100  投诉/维权电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服