1、一、解答题1在平面直角坐标系中,满足(1)直接写出、的值: ; ;(2)如图1,若点满足的面积等于6,求的值;(3)设线段交轴于C,动点E从点C出发,在轴上以每秒1个单位长度的速度向下运动,动点F从点出发,在轴上以每秒2个单位长度的速度向右运动,若它们同时出发,运动时间为秒,问为何值时,有?请求出的值解析:(1),2;(2)或;(3)或2【分析】(1)由,求出和的值即可;(2)过点作直线轴,延长交于,设出点坐标,根据面积关系求出点坐标,再求出的长度,即可求出值;(3)先根据求出点坐标,再根据面积关系求出值即可【详解】解:(1),故答案为,2;(2)如图1,过作直线垂直于轴,延长交直线于点,设的
2、坐标为,过作交直线于点,连接,解得,又点满足的面积等于6,解得或;(3)如图2,延长交轴于,过作轴于,过作轴于,解得,解得,由题知,当秒时,解得或2【点睛】本题是三角形综合题,考查三角形的面积,熟练掌握直角坐标系的知识,三角形的面积,梯形面积等知识是解题的关键2如图,在下面直角坐标系中,已知,三点,其中,满足关系式(1)求,的值;(2)如果在第二象限内有一点,请用含的式子表示四边形的面积;(3)在(2)的条件下,是否存在点,使四边形的面积与三角形的面积相等?若存在,求出点的坐标,若不存在,请说明理由解析:(1)a=2,b=3,c=4;(2)S四边形ABOP= 3-m;(3)存在,P(-3,)【
3、分析】(1)根据非负数的性质,即可解答;(2)四边形ABOP的面积=APO的面积+AOB的面积,即可解答;(3)存在,根据面积相等求出m的值,即可解答【详解】解:(1)由已知可得:a-2=0,b-3=0,c-4=0,解得:a=2,b=3,c=4;(2)a=2,b=3,c=4,A(0,2),B(3,0),C(3,4),OA=2,OB=3,SABO=23=3,SAPO=2(-m)=-m,S四边形ABOP=SABO+SAPO=3+(-m)=3-m(3)存在,SABC=43=6,若S四边形ABOP=SABC=3-m=6,则m=-3,存在点P(-3,)使S四边形ABOP=SABC【点睛】本题考查了坐标与
4、图形性质,解决本题的关键是根据非负数的性质求出a,b,c3如图,已知,且满足.(1)求、两点的坐标;(2)点在线段上,、满足,点在轴负半轴上,连交轴的负半轴于点,且,求点的坐标;(3)平移直线,交轴正半轴于,交轴于,为直线上第三象限内的点,过作轴于,若,且,求点的坐标.解析:(1),; (2);(3)【解析】【分析】(1)利用非负数的性质即可解决问题;(2)利用三角形面积求法,由列方程组,求出点C坐标,进而由ACD面积求出D点坐标.(3)由平行线间距离相等得到,继而求出E点坐标,同理求出F点坐标,再由GE=12求出G点坐标,根据求出PG的长即可求P点坐标.【详解】解:(1),(2)由,如图1,
5、连,作轴,轴,即,而,(3)如图2:EFAB,即,【点睛】本题考查的是二元一次方程的应用、三角形的面积公式、坐标与图形的性质、平移的性质,灵活运用分情况讨论思想、掌握平移规律是解题的关键4如图,在平面直角坐标系中,已知ABC,点A的坐标是(4,0),点B的坐标是(2,3),点C在x轴的负半轴上,且AC=6.(1)直接写出点C的坐标.(2)在y轴上是否存在点P,使得SPOB=SABC若存在,求出点P的坐标;若不存在,请说明理由.(3)把点C往上平移3个单位得到点H,作射线CH,连接BH,点M在射线CH上运动(不与点C、H重合).试探究HBM,BMA,MAC之间的数量关系,并证明你的结论.解析:(
6、1)C(-2,0);(2)点P坐标为(0,6)或(0,-6);(3)BMA=MACHBM,证明见解析.【分析】(1)由点A坐标可得OA=4,再根据C点x轴负半轴上,AC=6即可求得答案;(2)先求出SABC=9,SBOP=OP,再根据SPOB=SABC,可得OP=6,即可写出点P的坐标;(3)先得到点H的坐标,再结合点B的坐标可得到BH/AC,然后根据点M在射线CH上,分点M在线段CH上与不在线段CH上两种情况分别进行讨论即可得.【详解】(1)A(4,0),OA=4,C点x轴负半轴上,AC=6,OC=AC-OA=2,C(-2,0);(2)B(2,3),SABC=63=9,SBOP=OP2=OP
7、,又SPOB=SABC,OP=9=6,点P坐标为(0,6)或(0,-6);(3)BMA=MACHBM,证明如下:把点C往上平移3个单位得到点H,C(-2,0),H(-2,3),又B(2,3),BH/AC; 如图1,当点M在线段HC上时,过点M作MN/AC,MAC=AMN,MN/HB,HBM=BMN,BMA=BMN+AMN,BMA=HBM+MAC;如图2,当点M在射线CH上但不在线段HC上时,过点M作MN/AC,MAC=AMN,MN/HB,HBM=BMN,BMA=AMN-BMN,BMA=MAC-HBM;综上,BMA=MACHBM.【点睛】本题考查了点的坐标,三角形的面积,点的平移,平行线的判定与
8、性质等知识,综合性较强,正确进行分类并准确画出图形是解题的关键.5已知:ABCD点E在CD上,点F,H在AB上,点G在AB,CD之间,连接FG,EH,GE,GFBCEH(1)如图1,求证:GFEH;(2)如图2,若GEH,FM平分AFG,EM平分GEC,试问M与之间有怎样的数量关系(用含的式子表示M)?请写出你的猜想,并加以证明解析:(1)见解析;(2),证明见解析【分析】(1)由平行线的性质得到,等量代换得出,即可根据“同位角相等,两直线平行”得解;(2)过点作,过点作,根据平行线的性质及角平分线的定义求解即可【详解】(1)证明:,;(2)解:,理由如下:如图2,过点作,过点作,同理,平分,
9、平分,由(1)知,【点睛】此题考查了平行线的判定与性质,熟记平行线的判定与性质及作出合理的辅助线是解题的关键6如图1,已知直线mn,AB 是一个平面镜,光线从直线m上的点O射出,在平面镜AB上经点P反射后,到达直线n上的点Q我们称OP为入射光线,PQ为反射光线,镜面反射有如下性质:入射光线与平面镜的夹角等于反射光线与平面镜的夹角,即OPA=QPB(1)如图1,若OPQ=82,求OPA的度数;(2)如图2,若AOP=43,BQP=49,求OPA的度数;(3)如图3,再放置3块平面镜,其中两块平面镜在直线m和n上,另一块在两直线之间,四块平面镜构成四边形ABCD,光线从点O以适当的角度射出后,其传
10、播路径为 OPQROP试判断OPQ和ORQ的数量关系,并说明理由解析:(1)49,(2)44,(3)OPQ=ORQ【分析】(1)根据OPA=QPB可求出OPA的度数;(2)由AOP=43,BQP=49可求出OPQ的度数,转化为(1)来解决问题;(3)由(2)推理可知:OPQ=AOP+BQP,ORQ=DOR+RQC,从而OPQ=ORQ【详解】解:(1)OPA=QPB,OPQ=82,OPA=(180-OPQ)=(180-82)=49,(2)作PCm,mn,mPCn,AOP=OPC=43,BQP=QPC=49,OPQ=OPC+QPC=43+49=92,OPA=(180-OPQ)=(180-92)44
11、,(3)OPQ=ORQ理由如下:由(2)可知:OPQ=AOP+BQP,ORQ=DOR+RQC,入射光线与平面镜的夹角等于反射光线与平面镜的夹角,AOP=DOR,BQP=RQC,OPQ=ORQ【点睛】本题主要考查了平行线的性质和入射角等于反射角的规定,解决本题的关键是注意问题的设置环环相扣、前为后用的设置目的7如图,直线与、分别交于点、,点在直线上,过点作,垂足为点(1)如图1,求证:;(2)若点在线段上(不与、重合),连接,和的平分线交于点请在图2中补全图形,猜想并证明与的数量关系; 解析:(1)证明见解析;(2)补图见解析;当点在上时,;当点在上时,【分析】(1)过点作,根据平行线的性质即可
12、求解;(2)分两种情况:当点在上,当点在上,再过点作即可求解【详解】(1)证明:如图,过点作, ,(2)补全图形如图2、图3,猜想:或证明:过点作 , ,平分,如图3,当点在上时,平分,即如图2,当点在上时,平分,即【点睛】本题考查了平行线的基本性质、角平分线的基本性质及角的运算,解题的关键是准确作出平行线,找出角与角之间的数量关系8已知直线,点P为直线、所确定的平面内的一点(1)如图1,直接写出、之间的数量关系 ;(2)如图2,写出、之间的数量关系,并证明;(3)如图3,点E在射线上,过点E作,作,点G在直线上,作的平分线交于点H,若,求的度数解析:(1)A+C+APC=360;(2)见解析
13、;(3)55【分析】(1)首先过点P作PQAB,则易得ABPQCD,然后由两直线平行,同旁内角互补,即可证得A+C+APC=360;(2)作PQAB,易得ABPQCD,根据两直线平行,内错角相等,即可证得APC=A+C;(3)由(2)知,APC=PAB-PCD,先证BEF=PQB=110、PEG=FEG,GEH=BEG,根据PEH=PEG-GEH可得答案【详解】解:(1)A+C+APC=360如图1所示,过点P作PQAB,A+APQ=180,ABCD,PQCD,C+CPQ=180,A+APQ+C+CPQ=360,即A+C+APC=360;(2)APC=A+C,如图2,作PQAB,A=APQ,A
14、BCD,PQCD,C=CPQ,APC=APQ-CPQ,APC=A-C;(3)由(2)知,APC=PAB-PCD,APC=30,PAB=140,PCD=110,ABCD,PQB=PCD=110,EFBC,BEF=PQB=110,EFBC,BEF=PQB=110,PEG=PEF,PEG=FEG,EH平分BEG,GEH=BEG,PEH=PEG-GEH=FEG-BEG=BEF=55【点睛】此题考查了平行线的性质以及角平分线的定义此题难度适中,注意掌握辅助线的作法,注意掌握数形结合思想的应用9直线ABCD,点P为平面内一点,连接AP,CP(1)如图,点P在直线AB,CD之间,当BAP60,DCP20时,
15、求APC的度数;(2)如图,点P在直线AB,CD之间,BAP与DCP的角平分线相交于K,写出AKC与APC之间的数量关系,并说明理由;(3)如图,点P在直线CD下方,当BAKBAP,DCKDCP时,写出AKC与APC之间的数量关系,并说明理由解析:(1)80;(2)AKCAPC,理由见解析;(3)AKCAPC,理由见解析【分析】(1)先过P作PEAB,根据平行线的性质即可得到APEBAP,CPEDCP,再根据APCAPE+CPEBAP+DCP进行计算即可;(2)过K作KEAB,根据KEABCD,可得AKEBAK,CKEDCK,进而得到AKCAKE+CKEBAK+DCK,同理可得,APCBAP+
16、DCP,再根据角平分线的定义,得出BAK+DCKBAP+DCP(BAP+DCP)APC,进而得到AKCAPC;(3)过K作KEAB,根据KEABCD,可得BAKAKE,DCKCKE,进而得到AKCBAKDCK,同理可得,APCBAPDCP,再根据已知得出BAKDCKBAPDCPAPC,进而得到BAKDCKAPC【详解】(1)如图1,过P作PEAB,ABCD,PEABCD,APEBAP,CPEDCP,APCAPE+CPEBAP+DCP60+2080;(2)AKCAPC理由:如图2,过K作KEAB,ABCD,KEABCD,AKEBAK,CKEDCK,AKCAKE+CKEBAK+DCK,过P作PFA
17、B,同理可得,APCBAP+DCP,BAP与DCP的角平分线相交于点K,BAK+DCKBAP+DCP(BAP+DCP)APC,AKCAPC;(3)AKCAPC理由:如图3,过K作KEAB,ABCD,KEABCD,BAKAKE,DCKCKE,AKCAKECKEBAKDCK,过P作PFAB,同理可得,APCBAPDCP,BAKBAP,DCKDCP,BAKDCKBAPDCP(BAPDCP)APC,AKCAPC【点睛】本题考查了平行线的性质和角平分线的定义,解题的关键是作出平行线构造内错角相等计算10已知ABCD,线段EF分别与AB,CD相交于点E,F(1)请在横线上填上合适的内容,完成下面的解答:如
18、图1,当点P在线段EF上时,已知A35,C62,求APC的度数;解:过点P作直线PHAB,所以AAPH,依据是;因为ABCD,PHAB,所以PHCD,依据是;所以C(),所以APC()+()A+C97(2)当点P,Q在线段EF上移动时(不包括E,F两点):如图2,APQ+PQCA+C+180成立吗?请说明理由;如图3,APM2MPQ,CQM2MQP,M+MPQ+PQM180,请直接写出M,A与C的数量关系解析:(1)两直线平行,内错角相等;平行于同一条直线的两条直线平行;CPH;APH,CPH;(2)APQ+PQCA+C+180成立,理由见解答过程;3PMQ+A+C360【分析】(1)根据平行
19、线的判定与性质即可完成填空;(2)结合(1)的辅助线方法即可完成证明;(3)结合(1)(2)的方法,根据APM2MPQ,CQM2MQP,PMQ+MPQ+PQM180,即可证明PMQ,A与C的数量关系【详解】解:过点P作直线PHAB,所以AAPH,依据是两直线平行,内错角相等;因为ABCD,PHAB,所以PHCD,依据是平行于同一条直线的两条直线平行;所以C(CPH),所以APC(APH)+(CPH)A+C97故答案为:两直线平行,内错角相等;平行于同一条直线的两条直线平行;CPH;APH,CPH;(2)如图2,APQ+PQCA+C+180成立,理由如下:过点P作直线PHAB,QGAB,ABCD
20、,ABCDPHQG,AAPH,CCQG,HPQ+GQP180,APQ+PQCAPH+HPQ+GQP+CQGA+C+180APQ+PQCA+C+180成立;如图3,过点P作直线PHAB,QGAB,MNAB,ABCD,ABCDPHQGMN,AAPH,CCQG,HPQ+GQP180,HPMPMN,GQMQMN,PMQHPM+GQM,APM2MPQ,CQM2MQP,PMQ+MPQ+PQM180,APM+CQMA+C+PMQ2MPQ+2MQP2(180PMQ),3PMQ+A+C360【点睛】考核知识点:平行线的判定和性质熟练运用平行线性质和判定,添加适当辅助线是关键11已知,如图:射线分别与直线、相交于
21、、两点,的角平分线与直线相交于点,射线交于点,设,且(1)_,_;直线与的位置关系是_;(2)如图,若点是射线上任意一点,且,试找出与之间存在一个什么确定的数量关系?并证明你的结论(3)若将图中的射线绕着端点逆时针方向旋转(如图)分别与、相交于点和点时,作的角平分线与射线相交于点,问在旋转的过程中的值变不变?若不变,请求出其值;若变化,请说明理由解析:(1)35,35,平行;(2)FMN+GHF=180,证明见解析;(3)不变,2【分析】(1)根据(-35)2+|-|=0,即可计算和的值,再根据内错角相等可证ABCD;(2)先根据内错角相等证GHPN,再根据同旁内角互补和等量代换得出FMN+G
22、HF=180;(3)作PEM1的平分线交M1Q的延长线于R,先根据同位角相等证ERFQ,得FQM1=R,设PER=REB=x,PM1R=RM1B=y,得出EPM1=2R,即可得=2【详解】解:(1)(-35)2+|-|=0,=35,PFM=MFN=35,EMF=35,EMF=MFN,ABCD;(2)FMN+GHF=180;理由:由(1)得ABCD,MNF=PME,MGH=MNF,PME=MGH,GHPN,GHM=FMN,GHF+GHM=180,FMN+GHF=180;(3)的值不变,为2,理由:如图3中,作PEM1的平分线交M1Q的延长线于R,ABCD,PEM1=PFN,PER=PEM1,PF
23、Q=PFN,PER=PFQ,ERFQ,FQM1=R,设PER=REB=x,PM1R=RM1B=y,则有:,可得EPM1=2R,EPM1=2FQM1,=2【点睛】本题主要考查平行线的判定与性质,熟练掌握内错角相等证平行,平行线同旁内角互补等知识是解题的关键12已知,定点,分别在直线,上,在平行线,之间有一动点(1)如图1所示时,试问,满足怎样的数量关系?并说明理由(2)除了(1)的结论外,试问,还可能满足怎样的数量关系?请画图并证明(3)当满足,且,分别平分和,若,则_猜想与的数量关系(直接写出结论)解析:(1)AEP+PFC=EPF;(2)AEP+EPF+PFC=360;(3)150或30;E
24、PF+2EQF=360或EPF=2EQF【分析】(1)由于点是平行线,之间有一动点,因此需要对点的位置进行分类讨论:如图1,当点在的左侧时,满足数量关系为:;(2)当点在的右侧时,满足数量关系为:;(3)若当点在的左侧时,;当点在的右侧时,可求得;结合可得,由,得出;可得,由,得出【详解】解:(1)如图1,过点作,;(2)如图2,当点在的右侧时,满足数量关系为:;过点作,;(3)如图3,若当点在的左侧时,分别平分和,;如图4,当点在的右侧时,;故答案为:或30;由可知:,;,综合以上可得与的数量关系为:或【点睛】本题主要考查了平行线的性质,平行公理和及推论等知识点,作辅助线后能求出各个角的度数
25、,是解此题的关键13如图,在平面直角坐标系xOy中,对于任意两点A(x1,y1)与B(x2,y2)的“非常距离”,给出如下定义:若|x1x2|y1y2|,则点A与点B的“非常距离”为|x1x2|;若|x1x2|y1y2|,则点A与点B的“非常距离”为|y1y2|(1)填空:已知点A(3,6)与点B(5,2),则点A与点B的“非常距离”为 ;(2)已知点C(1,2),点D为y轴上的一个动点若点C与点D的“非常距离”为2,求点D的坐标;直接写出点C与点D的“非常距离”的最小值解析:(1)4;(2)或;1【分析】(1)依照题意,分别求出和,比较大小,得出答案,(2)点在轴上所以横坐标为0,所以点和点
26、的纵坐标差的绝对值应为2,可得点坐标,(3)已知点和点的横坐标差的绝对值恒等于1,纵坐标差的绝对是个动点问题,取值范围和1比较,可得出最小值为1【详解】解:(1),点与点的“非常距离”为4故答案为:4(2)点在轴上所以横坐标为0,点和点的纵坐标差的绝对值应为2,设点的纵坐标为,解得或,点的坐标为或,故点的坐标为或;最小值为1,理由为已知点和点的横坐标差的绝对值恒等于1,设点的纵坐标为,当时,可得点与点的“非常距离”为1,当或时,可得点与点的“非常距离”为,点与点的“非常距离”的最小值为1,故点与点的“非常距离”的最小值为1【点睛】本题考查了直角坐标系坐标结合绝对值的应用,是新定义问题,难点在于
27、第三问的动点位置取值范围讨论,需要学生根据题意正确讨论14在平面直角坐标系中,为坐标原点已知两点,且、满足;若四边形为平行四边形,且 ,点在轴上(1)如图,动点从点出发,以每秒个单位长度沿轴向下运动,当时间为何值时,三角形的面积等于平行四边形面积的四分之一;(2)如图,当从点出发,沿轴向上运动,连接、,、存在什么样的数量关系,请说明理由(排除在和两点的特殊情况)解析:(1)1或3;(2)APD =CDP+PAB或APD=PAB-CDP,理由见解析【分析】(1)由非负数的性质求出a,b,得到AB的长,结合点C坐标求出平行四边形ABCD的面积,再根据的面积等于平行四边形面积的,列出方程,解之即可;
28、(2)分点P在线段OC上和点P在OC的延长线上,两种情况,过P作PQAB,利用平行线的性质求解【详解】解:(1),a=-4,b=3,即A(-4,0),B(3,0),AB=3-(-4)=7,又C(0,4),OC=4,平行四边形ABCD的面积=47=28,由题意可知:PC=2t,则OP=,的面积等于平行四边形面积的,解得:t=1或t=3,(2)如图,当点P在线段OC上时,过P作PQAB,则PQCD,CDP=DPQ,APQ=PAB,APD=DPQ+APQ=CDP+PAB;当点P在OC的延长线上时,过P作PQAB,则PQCD,CDP=DPQ,APQ=PAB,APD=APQ-DPQ=PAB-CDP【点睛
29、】本题考查了坐标与图形,平行线的性质,解题的关键是掌握坐标和图形的关系,将坐标与线段长进行转化,同时适当添加辅助线,构造平行线15如图,已知点,(1)求的面积;(2)点是在坐标轴上异于点的一点,且的面积等于的面积,求满足条件的点的坐标;(3)若点的坐标为,且,连接交于点,在轴上有一点,使的面积等于的面积,请直接写出点的坐标_(用含的式子表示)解析:(1)2;(2);(3)或【分析】(1)直接利用以为底,进行求面积;(2)的面积等于的面积,需要分三种情况进行分类讨论;(3)根据推导出,然后分两种情况进行讨论,即当位于轴负半轴上时与位于轴正半轴上时【详解】解:(1)()作如下图形,进行分类讨论:当点在轴正半轴上时,;当点在轴负半轴上时,;当点在轴负半轴上时,;因此符合条件的点坐标有3个,分别是(3),即与点到的距离相等,由可推出,位于轴负半轴上时,;位于轴正半轴上时,综上:点的坐标为或【点睛】本题考查了坐标与图形、三角形的面积、动点问题,解题的关键是要作适当辅助线,进行分类讨论求解