收藏 分销(赏)

浙教版八年级上册压轴题数学模拟试卷.doc

上传人:天**** 文档编号:4697829 上传时间:2024-10-10 格式:DOC 页数:41 大小:1.97MB
下载 相关 举报
浙教版八年级上册压轴题数学模拟试卷.doc_第1页
第1页 / 共41页
浙教版八年级上册压轴题数学模拟试卷.doc_第2页
第2页 / 共41页
浙教版八年级上册压轴题数学模拟试卷.doc_第3页
第3页 / 共41页
浙教版八年级上册压轴题数学模拟试卷.doc_第4页
第4页 / 共41页
浙教版八年级上册压轴题数学模拟试卷.doc_第5页
第5页 / 共41页
点击查看更多>>
资源描述

1、浙教版八年级上册压轴题数学模拟试卷一、压轴题1如图,ABC是等边三角形,ADC与ABC关于直线AC对称,AE与CD垂直交BC的延长线于点E,EAF45,且AF与AB在AE的两侧,EFAF(1)依题意补全图形(2)在AE上找一点P,使点P到点B,点C的距离和最短;求证:点D到AF,EF的距离相等2某校八年级数学兴趣小组对“三角形内角或外角平分线的夹角与第三个内角的数量关系”进行了探究(1)如图1,在ABC中,ABC与ACB的平分线交于点P,A64,则BPC ;(2)如图2,ABC的内角ACB的平分线与ABC的外角ABD的平分线交于点E其中A,求BEC(用表示BEC);(3)如图3,CBM、BCN

2、为ABC的外角,CBM、BCN的平分线交于点Q,请你写出BQC与A的数量关系,并证明3直角三角形中,直线过点(1)当时,如图1,分别过点和作直线于点,直线于点,与是否全等,并说明理由;(2)当,时,如图2,点与点关于直线对称,连接,点是上一点,点是上一点,分别过点作直线于点,直线于点,点从点出发,以每秒的速度沿路径运动,终点为,点从点出发,以每秒的速度沿路径运动,终点为,点同时开始运动,各自达到相应的终点时停止运动,设运动时间为秒,当为等腰直角三角形时,求的值4如图1,在等边ABC中,E、D两点分别在边AB、BC上,BE=CD,AD、CE相交于点F(1)求AFE的度数;(2)过点A作AHCE于

3、H,求证:2FH+FD=CE;(3)如图2,延长CE至点P,连接BP,BPC=30,且CF=CP,求的值(提示:可以过点A作KAF=60,AK交PC于点K,连接KB)5已知在ABC中,ABAC,射线BM、BN在ABC内部,分别交线段AC于点G、H(1)如图1,若ABC60,MBN30,作AEBN于点D,分别交BC、BM于点E、F求证:12;如图2,若BF2AF,连接CF,求证:BFCF;(2)如图3,点E为BC上一点,AE交BM于点F,连接CF,若BFEBAC2CFE,求的值6已知和都是等腰三角形,(初步感知)(1)特殊情形:如图,若点,分别在边,上,则_(填、或=)(2)发现证明:如图,将图

4、中的绕点旋转,当点在外部,点在内部时,求证:(深入研究)(3)如图,和都是等边三角形,点,在同一条直线上,则的度数为_;线段,之间的数量关系为_(4)如图,和都是等腰直角三角形,点、在同一直线上,为中边上的高,则的度数为_;线段,之间的数量关系为_(拓展提升)(5)如图,和都是等腰直角三角形,将绕点逆时针旋转,连结、当,时,在旋转过程中,与的面积和的最大值为_7学习了三角形全等的判定方法(即“SAS”、“ASA”、“AAS”、“SSS”)和直角三角形全等的判定方法(即“HL”)后,我们继续对“两个三角形满足两边的其中一边的对角对应相等”的情形进行研究(初步思考)我们不妨将问题用符号语言表示为:

5、在DEF中,ACDF,BCEF,BE,然后,对B进行分类,可分为“B是直角、钝角、锐角”三种情况进行探究(深入探究)第一种情况:当B是直角时,ABCDEF(1)如图,在ABC和DEF中,ACDF,BCEF,BE90,根据_,可以知道RtABCRtDEF第二种情况:当B是钝角时,ABCDEF(2)如图,在ABC和DEF中,ACDF,BCEF,BE,且B、E都是钝角求证:ABCDEF第三种情况:当B是锐角时,ABC和DEF不一定全等(3)在ABC和DEF中,ACDF,BCEF,BE,且B、E都是锐角请你用直尺在图中作出DEF,使DEF和ABC不全等,并作简要说明8如图,若要判定纸带两条边线a,b是

6、否互相平行,我们可以采用将纸条沿AB折叠的方式来进行探究(1)如图1,展开后,测得,则可判定a/b,请写出判定的依据_;(2)如图2,若要使a/b,则与应该满足的关系是_;(3)如图3,纸带两条边线a,b互相平行,折叠后的边线b与a交于点C,若将纸带沿(,分别在边线a,b上)再次折叠,折叠后的边线b与a交于点,AB/,求出的长9如图,在平面直角坐标系中,点、在轴上且关于轴对称 (1)求点的坐标;(2)动点以每秒2个单位长度的速度从点出发沿轴正方向向终点运动,设运动时间为秒,点到直线的距离的长为,求与的关系式;(3)在(2)的条件下,当点到的距离为时,连接,作的平分线分别交、于点、,求的长10阅

7、读并填空:如图,是等腰三角形,是边延长线上的一点,在边上且联接交于,如果,那么,为什么?解:过点作交于所以(两直线平行,同位角相等)(_)在与中所以,(_)所以(_)因为(已知)所以(_)所以(等量代换)所以(_)所以11(1)探索发现:如图1,已知RtABC中,ACB90,ACBC,直线l过点C,过点A作ADl,过点B作BEl,垂足分别为D、E求证:ADCE,CDBE(2)迁移应用:如图2,将一块等腰直角的三角板MON放在平面直角坐标系内,三角板的一个锐角的顶点与坐标原点O重合,另两个顶点均落在第一象限内,已知点M的坐标为(1,3),求点N的坐标(3)拓展应用:如图3,在平面直角坐标系内,已

8、知直线y3x+3与y轴交于点P,与x轴交于点Q,将直线PQ绕P点沿逆时针方向旋转45后,所得的直线交x轴于点R求点R的坐标12已知ABC,P 是平面内任意一点(A、B、C、P 中任意三点都不在同一直线上)连接 PB、PC,设PBAs,PCAt,BPCx,BACy(1)如图,当点 P 在ABC 内时,若 y70,s10,t20,则 x ;探究 s、t、x、y 之间的数量关系,并证明你得到的结论(2)当点 P 在ABC 外时,直接写出 s、t、x、y 之间所有可能的数量关系,并画出相应的图形13如图1在ABC中,ACB=90,AC=BC=10,直线DE经过点C,过点A,B分别作ADDE,BEDE,

9、垂足分别为点D和E,AD=8,BE=6(1)求证:ADCCEB;求DE的长;(2)如图2,点M以3个单位长度/秒的速度从点C出发沿着边CA运动,到终点A,点N以8个单位长度/秒的速度从点B出发沿着线BCCA运动,到终点AM,N两点同时出发,运动时间为t秒(t0),当点N到达终点时,两点同时停止运动,过点M作PMDE于点P,过点N作QNDE于点Q;当点N在线段CA上时,用含有t的代数式表示线段CN的长度;当t为何值时,点M与点N重合;当PCM与QCN全等时,则t=14已知:如图1,直线,EF分别交AB,CD于E,F两点,的平分线相交于点K(1)求的度数;(2)如图2,的平分线相交于点,问与的度数

10、是否存在某种特定的等量关系?写出结论并证明;(3)在图2中作,的平分线相交于点,作,的平分线相交于点,依此类推,作,的平分线相交于点,请用含的n式子表示的度数(直接写出答案,不必写解答过程)15已知,如图1,直线l2l1,垂足为A,点B在A点下方,点C在射线AM上,点B、C不与点A重合,点D在直线11上,点A的右侧,过D作l3l1,点E在直线l3上,点D的下方(1)l2与l3的位置关系是 ;(2)如图1,若CE平分BCD,且BCD70,则CED ,ADC ;(3)如图2,若CDBD于D,作BCD的角平分线,交BD于F,交AD于G试说明:DGFDFG;(4)如图3,若DBEDEB,点C在射线AM

11、上运动,BDC的角平分线交EB的延长线于点N,在点C的运动过程中,探索N:BCD的值是否变化,若变化,请说明理由;若不变化,请直接写出比值16如图,在中,点D在边BC上运动(点D不与点重合),连接AD,作,DE交边AC于点E(1)当时, , (2)当DC等于多少时,请说明理由;(3)在点D的运动过程中,的形状可以是等腰三角形吗?若可以,请求出的度数;若不可以,请说明理由17小敏与同桌小颖在课下学习中遇到这样一道数学题:“如图(1),在等边三角形中,点在上,点在的延长线上,且,试确定线段与的大小关系,并说明理由”小敏与小颖讨论后,进行了如下解答:(1)取特殊情况,探索讨论:当点为的中点时,如图(

12、2),确定线段与的大小关系,请你写出结论:_(填“”,“”或“”),并说明理由(2)特例启发,解答题目:解:题目中,与的大小关系是:_(填“”,“”或“”)理由如下:如图(3),过点作EFBC,交于点(请你将剩余的解答过程完成)(3)拓展结论,设计新题:在等边三角形中,点在直线上,点在直线上,且,若的边长为,求的长(请你画出图形,并直接写出结果)18(1)如图1,和都是等边三角形,且,三点在一条直线上,连接,相交于点,求证:(2)如图2,在中,若,分别以,和为边在外部作等边,等边,等边,连接、恰交于点求证:; 如图2,在(2)的条件下,试猜想,与存在怎样的数量关系,并说明理由19如图1,直角三

13、角形DEF与直角三角形ABC的斜边在同一直线上,EDF30,ABC40,CD平分ACB,将DEF绕点D按逆时针方向旋转,记ADF为(0180),在旋转过程中;(1)如图2,当 时,当 时,DEBC;(2)如图3,当顶点C在DEF内部时,边DF、DE分别交BC、AC的延长线于点M、N,此时的度数范围是 ;1与2度数的和是否变化?若不变求出1与2度数和;若变化,请说明理由;若使得221,求的度数范围20探究:如图,在ABC中,ACB90,CDAB于点D,若B30,则ACD的度数是 度;拓展:如图,MCN90,射线CP在MCN的内部,点A、B分别在CM、CN上,分别过点A、B作ADCP、BECP,垂

14、足分别为D、E,若CBE70,求CAD的度数;应用:如图,点A、B分别在MCN的边CM、CN上,射线CP在MCN的内部,点D、E在射线CP上,连接AD、BE,若ADPBEP60,则CAD+CBE+ACB 度【参考答案】*试卷处理标记,请不要删除一、压轴题1(1)详见解析;(2)详见解析;详见解析【解析】【分析】(1)本题考查理解题意能力,按照题目所述依次作图即可(2)本题考查线段和最短问题,需要通过垂直平分线的性质将所求线段转化为其他等量线段之和,以达到求解目的本题考查垂直平分线的判定以及全等三角形的证明,继而利用角的平分线性质即可得出结论【详解】(1)补全图形,如图1所示(2)如图2,连接B

15、D,P为BD与AE的交点等边ACD,AECDPC=PD,PC+PB最短等价于PB+PD最短故B,D之间直线最短,点P即为所求证明:连接DE,DF如图3所示ABC,ADC是等边三角形ACAD,ACBCAD60AECDCAECAD30CEAACBCAE30CAECEACACECD垂直平分AEDADEDAEDEAEFAF,EAF45FEA45FEAEAFFAFE,FADFEDFADFED(SAS)AFDEFD点D到AF,EF的距离相等【点睛】本题第一问作图极为重要,要求对题意有较深的理解,同时对于垂直平分线以及角平分线的定义要清楚,能通过题目文字所述转化为考点,信息转化能力需要多做题目加以提升2(1

16、)BPC122;(2)BEC;(3)BQC90A,证明见解析【解析】【分析】(1)根据三角形的内角和化为角平分线的定义;(2)根据三角形的一个外角等于与它不相邻的两个内角的和,用A与1表示出2,再利用E与1表示出2,于是得到结论;(3)根据三角形的一个外角等于与它不相邻的两个内角的和以及角平分线的定义表示出EBC与ECB,然后再根据三角形的内角和定理列式整理即可得解【详解】解:(1)、分别平分和,故答案为:;(2)和分别是和的角平分线,又是的一外角,是的一外角,;(3),结论:【点睛】本题考查了三角形的外角性质与内角和定理,熟记三角形的一个外角等于与它不相邻的两个内角的和是解题的关键3(1)全

17、等,理由见解析;(2)t=3.5秒或5秒【解析】【分析】(1)根据垂直的定义得到DAC=ECB,利用AAS定理证明ACDCBE;(2)分点F沿CB路径运动和点F沿BC路径运动两种情况,根据等腰三角形的定义列出算式,计算即可;【详解】解:(1)ACD与CBE全等理由如下:AD直线l,DAC+ACD=90,ACB=90,BCE+ACD=90,DAC=ECB,在ACD和CBE中,ACDCBE(AAS);(2)由题意得,AM=t,FN=3t,则CM=8-t,由折叠的性质可知,CF=CB=6,CN=6-3t,点N在BC上时,CMN为等腰直角三角形,当点N沿CB路径运动时,由题意得,8-t=3t-6,解得

18、,t=3.5,当点N沿BC路径运动时,由题意得,8-t=18-3t,解得,t=5,综上所述,当t=3.5秒或5秒时,CMN为等腰直角三角形;【点睛】本题考查的是全等三角形的判定和性质,掌握全等三角形的判定定理和性质定理,灵活运用分情况讨论思想是解题的关键4(1)AFE=60;(2)见解析;(3)【解析】【分析】(1)通过证明 得到对应角相等,等量代换推导出;(2)由(1)得到, 则在 中利用30所对的直角边等于斜边的一半,等量代换可得;(3)通过在PF上取一点K使得KF=AF,作辅助线证明和全等,利用对应边相等,等量代换得到比值.(通过将顺时针旋转60也是一种思路.)【详解】(1)解:如图1中

19、为等边三角形,AC=BC,BAC=ABC=ACB=60,在和中, ,(SAS),BCE=DAC,BCE+ACE=60,DAC+ACE=60,AFE=60(2)证明:如图1中,AHEC,AHF=90,在RtAFH中,AFH=60,FAH=30,AF=2FH,EC=AD,AD=AF+DF=2FH+DF,2FH+DF=EC(3)解:在PF上取一点K使得KF=AF,连接AK、BK,AFK=60,AF=KF,AFK为等边三角形,KAF=60,KAB=FAC,在和中, ,(SAS), AKB=AFC=120,BKE=12060=60,BPC=30,PBK=30, .【点睛】掌握等边三角形、直角三角形的性质

20、,及三角形全等的判定通过一定等量代换为本题的关键.5(1)见解析;见解析;(2)2【解析】【分析】(1)只要证明2+BAF1+BAF60即可解决问题;只要证明BFCADB,即可推出BFCADB90;(2)在BF上截取BKAF,连接AK只要证明ABKCAF,可得SABKSAFC,再证明AFFKBK,可得SABKSAFK,即可解决问题;【详解】(1)证明:如图1中,ABAC,ABC60ABC是等边三角形,BAC60,ADBN,ADB90,MBN30,BFD601+BAF2+BAF,12证明:如图2中,在RtBFD中,FBD30,BF2DF,BF2AF,BFAD,BAEFBC,ABBC,BFCADB

21、,BFCADB90,BFCF(2)在BF上截取BKAF,连接AKBFE2+BAF,CFE4+1,CFB2+4+BAC,BFEBAC2EFC,1+42+412,ABAC,ABKCAF,34,SABKSAFC,1+32+3CFEAKB,BAC2CEF,KAF1+3AKF,AFFKBK,SABKSAFK,【点睛】本题考查全等三角形的判定和性质、等边三角形的性质、等腰三角形的判定和性质、直角三角形30度角性质等知识,解题的关键是能够正确添加常用辅助线,构造全等三角形解决问题,属于中考压轴题6(1)=;(2)证明见解析;(3)60,BD=CE;(4)90,AM+BD=CM;(5)7【解析】【分析】(1)

22、由DEBC,得到,结合AB=AC,得到DB=EC;(2)由旋转得到的结论判断出DABEAC,得到DB=CE;(3)根据等边三角形的性质和全等三角形的判定定理证明DABEAC,根据全等三角形的性质求出结论;(4)根据全等三角形的判定和性质和等腰直角三角形的性质即可得到结论;(5)根据旋转的过程中ADE的面积始终保持不变,而在旋转的过程中,ADC的AC始终保持不变,即可【详解】初步感知(1)DEBC,AB=AC,DB=EC,故答案为:=,(2)成立理由:由旋转性质可知DAB=EAC,在DAB和EAC中,DABEAC(SAS),DB=CE;深入探究(3)如图,设AB,CD交于O,ABC和ADE都是等

23、边三角形,AD=AE,AB=AC,DAE=BAC=60,DAB=EAC,在DAB和EAC中,DABEAC(SAS),DB=CE,ABD=ACE,BOD=AOC,BDC=BAC=60;(4)DAE是等腰直角三角形,AED=45,AEC=135,在DAB和EAC中,DABEAC(SAS),ADB=AEC=135,BD=CE,ADE=45,BDC=ADB-ADE=90,ADE都是等腰直角三角形,AM为ADE中DE边上的高,AM=EM=MD,AM+BD=CM;故答案为:90,AM+BD=CM;【拓展提升】(5)如图,由旋转可知,在旋转的过程中ADE的面积始终保持不变,ADE与ADC面积的和达到最大,A

24、DC面积最大,在旋转的过程中,AC始终保持不变,要ADC面积最大,点D到AC的距离最大,DAAC,ADE与ADC面积的和达到的最大为2+ACAD=5+2=7,故答案为7【点睛】此题是几何变换综合题,主要考查了旋转和全等三角形的性质和判定,旋转过程中面积变化分析,解本题的关键是三角形全等的判定7(1)HL;(2)见解析;(3)如图,见解析;DEF就是所求作的三角形,DEF和ABC不全等【解析】【分析】(1)根据直角三角形全等的方法“HL”证明;(2)过点C作CGAB交AB的延长线于G,过点F作FHDE交DE的延长线于H,根据等角的补角相等求出CBG=FEH,再利用“角角边”证明CBG和FEH全等

25、,根据全等三角形对应边相等可得CG=FH,再利用“HL”证明RtACG和RtDFH全等,根据全等三角形对应角相等可得A=D,然后利用“角角边”证明ABC和DEF全等;(3)以点C为圆心,以AC长为半径画弧,与AB相交于点D,E与B重合,F与C重合,得到DEF与ABC不全等;(4)根据三种情况结论,B不小于A即可【详解】(1)在直角三角形中一条斜边和一条直角边对应相等的两个直角三角形全等运用的是HL(2)证明:如图,分别过点C、F作对边AB、DE上的高CG、FH,其中G、H为垂足ABC、DEF都是钝角G、H分别在AB、DE的延长线上CGAG,FHDH,CGAFHD90CBG180ABC,FEH1

26、80DEF,ABCDEF,CBGFEH在BCG和EFH中,CGBFHE,CBGFEH,BCEF,BCGEFHCGFH又ACDFRtACGDFHAD在ABC和DEF中,ABCDEF,AD,ACDF,ABCDEF(3)如图,DEF就是所求作的三角形,DEF和ABC不全等【点睛】本题是三角形综合题,主要考查了全等三角形的判定与性质,应用与设计作图,熟练掌握三角形全等的判定方法是解题的关键,阅读量较大,审题要认真仔细8(1)内错角相等,两直线平行;(2)1+22=180;(3)4或10【解析】【分析】(1)根据平行线的判定定理,即可得到答案;(2)由折叠的性质得:3=4,若ab,则3=2,结合三角形内

27、角和定理,即可得到答案;(3)分两种情况:当B1在B的左侧时,如图2,当B1在B的右侧时,如图3,分别求出的长,即可得到答案【详解】(1),ab(内错角相等,两直线平行),故答案是:内错角相等,两直线平行;(2)如图1,由折叠的性质得:3=4,若ab,则3=2,4=2,2+4+1=180,1+22=180,要使ab,则与应该满足的关系是:1+22=180故答案是:1+22=180;(3)当B1在B的左侧时,如图2,AB/,ab,AA1=BB1=3,=AC- AA1=7-3=4;当B1在B的右侧时,如图3,AB/,ab,AA1=BB1=3,=AC+AA1=7+3=10综上所述:=4或10【点睛】

28、本题主要考查平行线的判定和性质定理,折叠的性质以及三角形的内角和定理,掌握“平行线间的平行线段长度相等”是解题的关键9(1)C(4,0);(2);(3)【解析】【分析】(1)根据对称的性质知为等边三角形,利用直角三角形中30度角的性质即可求得答案;(2)利用面积法可求得,再利用坐标系中点的特征即可求得答案;(3)利用(2)的结论求得,利用角平分线的性质证得,求得,利用面积法求得,再利用直角三角形中30度角的性质即可求得答案【详解】(1)点、关于轴对称,为等边三角形,点C的坐标为:;(2)连接,即:;(3)点到的距离为,延长交于点,过点作轴于点,连接、,为的角平分线,为等边三角形,设,在中,在中

29、,【点睛】本题是三角形综合题,涉及的知识有:含30度直角三角形的性质,全等三角形的判定与性质,外角性质,角平分线的性质,等边三角形的判定和性质,坐标与图形性质,熟练掌握性质及定理、灵活运用面积法求线段的长是解本题的关键10见解析【解析】【分析】先根据平行线的性质,得到角的关系,然后证明,写出证明过程和依据即可【详解】解:过点作交于,(两直线平行,同位角相等),(两直线平行,内错角相等),在与中,()(全等三角形对应边相等)(已知)(等边对等角)(等量代换)(等角对等边);【点睛】本题考查了全等三角形的判定和性质,平行线的性质,解题的关键是由平行线的性质正确找到证明三角形全等的条件,从而进行证明

30、.11(1)见解析(2)(4,2)(3)(6,0)【解析】【分析】(1)先判断出ACB=ADC,再判断出CAD=BCE,进而判断出ACDCBE,即可得出结论;(2)先判断出MF=NG,OF=MG,进而得出MF=1,OF=3,即可求出FG=MF+MG=1+3=4,即可得出结论;(3)先求出OP=3,由y=0得x=1,进而得出Q(1,0),OQ=1,再判断出PQ=SQ,即可判断出OH=4,SH=0Q=1,进而求出直线PR的解析式,即可得出结论.【详解】证明:ACB90,ADlACBADCACEADC+CAD,ACEACB+BCECADBCE,ADCCEB90,ACBCACDCBE,ADCE,CDB

31、E,(2)解:如图2,过点M作MFy轴,垂足为F,过点N作NGMF,交FM的延长线于G,由已知得OMON,且OMN90由(1)得MFNG,OFMG,M(1,3)MF1,OF3MG3,NG1FGMF+MG1+34,OFNG312,点N的坐标为(4,2),(3)如图3,过点Q作QSPQ,交PR于S,过点S作SHx轴于H,对于直线y3x+3,由x0得y3P(0,3),OP3由y0得x1,Q(1,0),OQ1,QPR45PSQ45QPSPQSQ由(1)得SHOQ,QHOPOHOQ+QHOQ+OP3+14,SHOQ1S(4,1),设直线PR为ykx+b,则 ,解得 直线PR为yx+3由y0得,x6R(6

32、,0)【点睛】本题是一次函数综合题,主要考查了待定系数法,全等三角形的判定和性质,构造出全等三角形是解本题的关键.12(1)100;x=y+s+t;(2)见详解【解析】【分析】(1)利用三角形的内角和定理即可解决问题;结论:x=y+s+t利用三角形内角和定理即可证明;(2)分6种情形分别求解即可解决问题【详解】解:(1)BAC=70,ABC+ACB=110,PBA=10,PCA=20,PBC+PCB=80,BPC=100,x=100,故答案为:100结论:x=y+s+t理由:A+ABC+ACB=A+PBA+PCA+PBC+PCB=180,PBC+PCB+BPC=180,A+PBA+PCA=BP

33、C,x=y+s+t(2)s、t、x、y之间所有可能的数量关系:如图1:s+x=t+y;如图2:s+y=t+x;如图3:y=x+s+t;如图4:x+y+s+t=360;如图5:t=s+x+y;如图6:s=t+x+y;【点睛】本题考查三角形的内角和定理,三角形的外角的性质等知识,解题的关键是学会用分类讨论的思想思考问题13(1)证明见解析;DE=14;(2)8t10;t=2;t=【解析】【分析】(1)先证明DACECB,由AAS即可得出ADCCEB;由全等三角形的性质得出ADCE8,CDBE6,即可得出DECDCE14;(2)当点N在线段CA上时,根据CNCNBC即可得出答案;点M与点N重合时,C

34、MCN,即3t8t10,解得t2即可;分两种情况:当点N在线段BC上时,PCMQNC,则CMCN,得3t108t,解得t1011;当点N在线段CA上时,PCMQCN,则3t8t10,解得t2;即可得出答案【详解】(1)证明:ADDE,BEDE,ADCCEB90,ACB90,DACDCADCABCE90,DACECB,在ADC和CEB中,ADCCEB(AAS);由得:ADCCEB,ADCE8,CDBE6,DECDCE6814;(2)解:当点N在线段CA上时,如图3所示:CNCNBC8t10;点M与点N重合时,CMCN,即3t8t10,解得:t2,当t为2秒时,点M与点N重合;分两种情况:当点N在

35、线段BC上时,PCMQNC,CMCN,3t108t,解得:t;当点N在线段CA上时,PCMQCN,点M与N重合,CMCN,则3t8t10,解得:t2;综上所述,当PCM与QCN全等时,则t等于s或2s,故答案为:s或2s【点睛】本题是三角形综合题目,考查了全等三角形的判定与性质、等腰直角三角形的性质、直角三角形的性质、分类讨论等知识;本题综合性强,熟练掌握全等三角形的判定与性质是解题的关键14(1);(2),证明见解析;(3)【解析】【分析】(1) 过 作KGAB,交 于 ,证出KG,得到,根据角平分线的性质及平行线的性质得到,即可得到答案; (2)根据角平分线的性质得到,根据求出,根据求出答

36、案;(3)根据(2)得到规律解答即可.【详解】(1) 过 作KGAB,交 于 , ,KG,分别为与的平分线,则 ;(2) ,理由为:,的平分线相交于点,即 ,;(3)由(2)知;同理可得=,.【点睛】此题考查平行线的性质:两直线平行,内错角相等;平行公理的推论:平行于同一直线的两直线平行;角平分线的性质;(3)是难点,注意总结前两问的做题思路得到规律进行解答.15(1)互相平行;(2)35,20;(3)见解析;(4)不变,【解析】【分析】(1)根据平行线的判定定理即可得到结论;(2)根据角平分线的定义和平行线的性质即可得到结论;(3)根据角平分线的定义和平行线的性质即可得到结论;(4)根据角平

37、分线的定义,平行线的性质,三角形外角的性质即可得到结论【详解】解:(1)直线l2l1,l3l1,l2l3,即l2与l3的位置关系是互相平行,故答案为:互相平行;(2)CE平分BCD,BCEDCEBCD,BCD70,DCE35,l2l3,CEDDCE35,l2l1,CAD90,ADC907020;故答案为:35,20;(3)CF平分BCD,BCFDCF,l2l1,CAD90,BCF+AGC90,CDBD,DCF+CFD90,AGCCFD,AGCDGF,DGFDFG;(4)N:BCD的值不会变化,等于;理由如下:l2l3,BEDEBH,DBEDEB,DBEEBH,DBH2DBE,BCD+BDCDB

38、H,BCD+BDC2DBE,N+BDNDBE,BCD+BDC2N+2BDN,DN平分BDC,BDC2BDN,BCD2N,N:BCD【点睛】本题考查了三角形的综合题,三角形的内角和定理,三角形外角的性质,平行线的判定和性质,角平分线的定义,正确的识别图形进行推理是解题的关键16(1)30,100;(2),见解析;(3)可以,或【解析】【分析】(1)根据平角的定义,可求出 EDC 的度数,根据三角形内和定理,即可求出 DEC ;(2)当 AB=DC 时,利用 AAS 可证明 ABDDCE ,即可得出 AB=DC=3 ;(3)假设 ADE 是等腰三角形,分为三种情况讨论:当 DA=DE 时,求出 DAE=DEA=70 ,求出 BAC ,根据三角形的内角和定理求出 BAD ,根据三角形的内角和定理求出 BDA 即可;当 AD=AE 时, ADE=AED=40 ,根据 AEDC ,得出此时不符合;当 EA=ED 时,求出 DAC ,求出 BAD ,根据三角形的内角和定理求出 ADB 【详解】(1)在 BAD 中,B=50,BDA=100 ,故答案为,(2)当时,理由如下:,在和中(3)可以,理由如下:,分三种情况讨论:当时,当时,

展开阅读全文
部分上传会员的收益排行 01、路***(¥15400+),02、曲****(¥15300+),
03、wei****016(¥13200+),04、大***流(¥12600+),
05、Fis****915(¥4200+),06、h****i(¥4100+),
07、Q**(¥3400+),08、自******点(¥2400+),
09、h*****x(¥1400+),10、c****e(¥1100+),
11、be*****ha(¥800+),12、13********8(¥800+)。
相似文档                                   自信AI助手自信AI助手
百度文库年卡

猜你喜欢                                   自信AI导航自信AI导航
搜索标签

当前位置:首页 > 教育专区 > 初中数学

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2024 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服