收藏 分销(赏)

七年级数学下册-8.4-三元一次方程组解法举例教案.doc

上传人:人****来 文档编号:4673288 上传时间:2024-10-09 格式:DOC 页数:2 大小:78KB
下载 相关 举报
七年级数学下册-8.4-三元一次方程组解法举例教案.doc_第1页
第1页 / 共2页
七年级数学下册-8.4-三元一次方程组解法举例教案.doc_第2页
第2页 / 共2页
本文档共2页,全文阅读请下载到手机保存,查看更方便
资源描述
三元一次方程组解法举例 教学目标:1.了解三元一次方程组的概念. 2.会解某个方程只有两元的简单的三元一次方程组. 3.掌握解三元一次方程组过程中化三元为二元的思路. 教学重点:1使学生会解简单的三元一次方程组. 2通过本节学习,进一步体会“消元”的基本思想. 教学难点:针对方程组的特点,灵活使用代入法、加减法等重要方法. 教学过程: 一、创设情景,导入新课 前面我们学习了二元一次方程组的解法,有些实际问题可以设出两个未知数,列出二元一次方程组来求解。实际上,有不少问题中会含有更多的未知数,对于这样的问题,我们将如何来解决呢? 【引例】小明手头有12张面额分别为1元,2元,5元的纸币,共计22元,其中1元纸币的数量是2元纸币数量的4倍,求1元,2元,5元纸币各多少张. 提出问题:1.题目中有几个条件?2.问题中有几个未知量?3.根据等量关系你能列出方程组吗? 【列表分析】 (师生共同完成) (三个量关系) 每张面值 × 张数 = 钱数 1元 x x 2元 y 2y 5元 z 5z 合 计 12 22 注 1元纸币的数量是2元纸币数量的4倍,即x=4y (解法一:设1元、2元、5元的纸币分别为x张、y张、(12—x—y)张,根据题意得: x+2y+5(12—x—y)=22 x=4y 解得: x=8 y=2 12—x—y=2) 解法二: 解:(学生叙述个人想法,教师板书) 设1元,2元,5元的张数为x张,y张,z张. 根据题意列方程组为: 【得出定义】 (师生共同总结概括) 这个方程组有三个相同的未知数,每个方程中含未知数的项的次数都是1,并且一共有三个方程,像这样的方程组叫做三元一次方程组. 二、探究三元一次方程组的解法 【解法探究】怎样解这个方程组呢?能不能类比二元一次方程组的解法,设法消去一个或两个未知数,把它化成二元一次方程组或一元一次方程呢?(展开思路,畅所欲言) 例1 .解方程组 分析1:发现三个方程中x的系数都是1,因此确定用减法“消x”. 分析2:方程③是关于x的表达式,确定“消x”的目标. 【方法归纳】根据方程组的特点,由学生归纳出此类方程组为: 类型一:有表达式,用代入法. 针对上面的例题进而分析,例1中方程③中缺z,因此利用①、②消z,可达到消元构成二元一次方程组的目的. 根据方程组的特点,由学生归纳出此类方程组 类型二:缺某元,消某元. 教师提示:当然我们还可以通过消掉未知项y来达到将“三元”转化为“二元”目的,同学可以课下自行尝试一下. 三、课堂小结 1.解三元一次方程组的基本思路:通过“代入”或“加减”进行消元,把“三元”化为“二元”,使解三元一次方程组转化为解二元一次方程组,进而转化为解一元一次方程. 即三元一次方程组 二元一次方程组 一元一次方程 2.解题要有策略,今天我们学到的策略是:有表达式,用代入法;缺某元,消某元. 四、布置作业 解方程组 你能有多少种方法求解它? 本题方法灵活多样,有利于学生广开思路进行解法探究。 教材114页练习1(1),2;习题8.4—1.
展开阅读全文

开通  VIP会员、SVIP会员  优惠大
下载10份以上建议开通VIP会员
下载20份以上建议开通SVIP会员


开通VIP      成为共赢上传
相似文档                                   自信AI助手自信AI助手

当前位置:首页 > 教育专区 > 初中数学

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4009-655-100  投诉/维权电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服