1、学习特训营中考数学高分专题精讲精品讲义、第一高分专题 数与式第一关:考点精讲考点1 有理数、实数的概念【知识要点】1、 实数的分类:有理数,无理数。2、 实数和数轴上的点是_对应的,每一个实数都可以用数轴上的_来表示,反过来,数轴上的点都表示一个_。3、 _叫做无理数。一般说来,凡开方开不尽的数是无理数,但要注意,用根号形式表示的数并不都是无理数(如),也不是所有的无理数都可以写成根号的形式(如)。【典型考题】1、 把下列各数填入相应的集合内:有理数集 ,无理数集 正实数集 2、 在实数中,共有_个无理数3、 在中,无理数的个数是_4、 写出一个无理数_,使它与的积是有理数【复习指导】解这类问
2、题的关键是对有理数和无理数意义的理解。无理数与有理数的根本区别在于能否用既约分数来表示。考点2 数轴、倒数、相反数、绝对值【知识要点】1、 若,则它的相反数是_,它的倒数是_。0的相反数是_。2、 一个正实数的绝对值是_;一个负实数的绝对值是_;0的绝对值是_。3、 一个数的绝对值就是数轴上表示这个数的点与_的距离。【典型考题】1、_的倒数是;0.28的相反数是_。2、 如图1,数轴上的点M所表示的数的相反数为_-10123图1M3、 ,则的值为_4、 已知,且,则的值等于_-2-1012图235、 实数在数轴上对应点的位置如图2所示,下列式子中正确的有( ) A.1个 B.2个 C.3个 D
3、.4个6、 数轴上表示-2和-5的两点之间的距离是_数轴上表示1和-3的两点之间的距离是_。数轴上表示和-1的两点A和B之间的距离是_,如果|AB|=2,那么【复习指导】1、 若互为相反数,则;反之也成立。若互为倒数,则;反之也成立。2、 关于绝对值的化简(1) 绝对值的化简,应先判断绝对值符号内的数或式的值是正、负或0,然后再根据定义把绝对值符号去掉。(2) 已知,求时,要注意考点3 平方根与算术平方根【知识要点】1、 若,则叫做的_,记作_;正数的_叫做算术平方根,0的算术平方根是_。当时,的算术平方根记作_。2、 非负数是指_,常见的非负数有(1)绝对值;(2)实数的平方;(3)算术平方
4、根。3、 如果是实数,且满足,则有【典型考题】1、下列说法中,正确的是( )A.3的平方根是 B.7的算术平方根是C.的平方根是 D.的算术平方根是2、 9的算术平方根是_3、 等于_4、 ,则考点4 近似数和科学计数法【知识要点】1、 精确位:四舍五入到哪一位。2、 有效数字:从左起_到最后的所有数字。3、 科学计数法:正数:_ 负数:_【典型考题】1、 据生物学统计,一个健康的成年女子体内每毫升血液中红细胞的数量约为420万个,用科学计算法可以表示为_2、 由四舍五入得到的近似数0.5600的有效数字的个数是_,精确度是_3、 用小数表示:_考点5 实数大小的比较【知识要点】1、 正数0负
5、数;2、 两个负数绝对值大的反而小;3、 在数轴上,右边的数总大于左边的数;4、 作差法:【典型考题】1、 比较大小:。2、 应用计算器比较的大小是_3、 比较的大小关系:_4、 已知中,最大的数是_考点6 实数的运算【知识要点】1、。2、 今年我市二月份某一天的最低温度为,最高气温为,那么这一天的最高气温比最低气温高_3、 如图1,是一个简单的数值运算程序,当输入x的值为-1时,则输出的数值为_输入x输出4、 计算(1)(2)考点7 乘法公式与整式的运算【知识要点】1、 判别同类项的标准,一是_;二是_。2、 幂的运算法则:(以下的是正整数);3、 乘法公式:;4、 去括号、添括号的法则是_
6、【典型考题】1、下列计算正确的是( )A. B. C. D.2、 下列不是同类项的是( )A. B. C. D3、 计算:4、 计算:考点8 因式分解【知识要点】因式分解的方法:1、 提公因式:2、 公式法:【典型考题】1、 分解因式,2、 分解因式考点9:分式【知识要点】1、 分式的判别:(1)分子分母都是整式,(2)分母含有字母;2、 分式的基本性质:3、 分式的值为0的条件:_4、 分式有意义的条件:_5、 最简分式的判定:_6、 分式的运算:通分,约分【典型考题】1、 当x_时,分式有意义2、 当x_时,分式的值为零3、 下列分式是最简分式的是( )A. B. C. D4、 下列各式是
7、分式的是( )A. B. C. D5、 计算:6、 计算:考点10 二次根式【知识要点】1、 二次根式:如2、 二次根式的主要性质:(1) (2)(3) (4)3、 二次根式的乘除法4、 分母有理化:5、 最简二次根式:6、 同类二次根式:化简到最简二次根式后,根号内的数或式子相同的二次根式7、 二次根式有意义,根号内的式子必须大于或等于零【典型考题】1、下列各式是最简二次根式的是( )A. B. C. D.2、 下列根式与是同类二次根式的是( )A. B. C. D.3、 二次根式有意义,则x的取值范围_4、 若,则x_5、 计算:6、 计算:7、 计算:8、 数a、b在数轴上的位置如图所示
8、,化简:.数与式考点分析及复习研究(答案)考点1 有理数、实数的概念1、 有理数集无理数集 正实数集2、 23、 24、 答案不唯一。如()考点2 数轴、倒数、相反数、绝对值711、,2、 C3、 3 ,4 ;, 考点3 平方根与算术平方根1、 B2、 33、 6考点4 近似数和科学计数法1、2、 4,万分位3、 0.00007考点5 实数大小的比较1、 , 考点6 实数的运算1、2、 13、 (1)解:原式4 (2)解:原式124 3考点7 乘法公式与整式的运算1、 C2、 B解:原式 = = =解:原式 考点8 因式分解1、考点9:分式1、2、 D3、 A解:原式解:原式考点10 二次根式
9、1、 B2、 A解:原式 解:原式3、 解:原式第二关:难题透视例1 根据下表中的规律,从左到右的空格中应依次填写的数字是000110010111001111A100,011 B011,100 C011,101 D101,110【考点要求】本题考查以计算机语言为背景,用符号来表示数字的问题利用符号来表示数字0和1,要求能实现符号与数字的相互转化【思路点拨】通过观察,不难发现两个并排的短横表示0,而一条长横表示1,所表示的数是从上往下看,因而表格中的两个空格中所填的数这011和100 【答案】选B【方法点拨】部分学生不能够读懂题意,无法做出正确选择,往往会随便猜出一个答案突破方法:根据表格中所提
10、供的信息,找出规律,容易发现短横与长横所表示的不同意义然后对照分析出两个安全空格中所应填写的数字解题关键:对题目中提供的信息要仔细观察分析,理解其表示的意义例2用同样规格的黑白两种颜色的正方形瓷砖按图1-1方式铺地板,则第(3)个图形中有黑色瓷砖 块,第个图形中需要黑色瓷砖 块(用含的代数式表示)(2)(3) 图1-1【考点要求】本题考查数形结合、整理信息,将图形转化为数据,猜想规律、探求结论【思路点拨】根据图形可得出以下数据:第1个图形,黑色瓷砖4块;第2个图形,黑色瓷砖7块;第3个图形,黑色瓷砖10块不难看出,每幅图形中的黑色瓷砖依次增加3块,如果把第一个图形中的黑色瓷砖表示为13,则第2
11、个图形中的黑色瓷砖可表示为132所以第n个图形中的黑色瓷砖为1+3n【答案】黑色瓷砖10块,第n个图形中的黑色瓷砖为1+3n【方法点拨】部分学生缺乏一定的图形鉴别能力,不知如何分析突破方法:抓住其中的黑色瓷砖数目的变化规律,结合图形,观察其变化规律例3下列运算中,计算结果正确的是( )A. B.C. D.【考点要求】本题考查整式运算公式【思路点拨】同底数幂的乘法法则是底数,不变指数相加,而除法可能转化为乘法进行,幂的乘方是底数不变,指数相乘A项结果应等于,C项结果应等于,而D项无法运算【答案】选B【方法点拨】部分学生对幂运算公式掌握不够熟练,容易前生计算错误突破方法:加强相关练习,熟悉乘法公式
12、例4我国自行研制的“神舟6号飞船”载人飞船于2005年10月12日成功发射,并以每秒约7.820185公里的速度,在距地面343公里的轨道上绕地球一圈只需90分钟,请将这一数字用科学记数法表示为_km(要求保留两位有效数字)【考点要求】本题考查了学生科学记数法以及有效数字的知识【思路点拨】用科学记数法表示绝对值较大的数时,关键是10的指数,可归纳为指数n等于原数整数部分的位数减一所以这一数字可表示为4.2107【答案】4.2107【方法点拨】部分学生在用科学记数法表声学家较大或者较小的数时,对于10的指数容易弄错突破方法:掌握规律,记住幂的指数的确定方法解题关键:科学记数法中,a是整数数位只有
13、一位的数,10的指数是由小数点移动的位数决定的,也可以简单的记作用原数的数位减去1所得到的数值例5分解因式:= 【考点要求】本题考查多项式的因式分解【思路点拨】本题是四项,应采用分组分解法,分组分解法主要有两种,一是二二分组,另一种是一三分组,本题应采用一三分组法进行分解原式【答案】填【规律总结】部分学生含四项的多项式分解感到有一些困难突破方法:在无法用提公因式或者直接运用公式进行因式分解时,往往还会进行分组分解解题关键:分组分解一般是对含四项的多项式而言的,常见的有两种分组方法:二二分组,一三分组,有时还需要对原式的各项进行必要的交换例6有一道题“先化简,再求值:,其中”小玲做题时把“”错抄
14、成了“”,但她的计算结果也是正确的,请你解释这是怎么回事?【考点要求】本题考查的是分式的化简求值,同时也考查了学生辨析正误的学习能力【思路点拨】把原式化简,可得因为,所以无论是“”或“”,代入化简后的式子中,所求得的值都是相等的因而即使代错数值,结果仍然是正确的【方法点拨】部分学生不熟悉这种题型,因而不知如何下手,举棋不定突破方法:平时要注意多加积累,熟悉各种不同形式的问题,同时要能有一定创新思维,能应对新问题解题关键:解这类问题时,先按常规方法正确求解,再比较分析为什么会出现值代错了但结果正确的原因例7已知,化简的结果是( )A6 B2m8 C2m D2m【考点要求】本题考查多项式的求值运算
15、,不仅考查了学生整式乘法运算,同时还要求具备整体思想,这也是数学解题中常用的一种技巧【思路点拨】原式按多项式乘法运算后为,再将代入,可得2m【答案】选D【方法点拨】部分学生想通过由已知条件求出a、b的值,然后再代入求值,一种情况是无法解得结果,另一种是会用含m的式子表示a、b,但解题过程较繁琐,且容易出错突破方法:运用整体思想解题,能发现原式乘开后可用含和的式子表示,再将已知条件代入即可解题关键:许多类似的求代数式值的问题,往往不是直接将字母的值代入,而是利用整体代入求值图1-2例8如图1-2,时钟的钟面上标有1,2,312共计12个数,一条直线把钟面分成了两部分,请你再用一条直线分割钟面,使
16、钟面被分成三个不同的部分且各部分所包含的几个数的和都相等,则其中的两个部分所包含的几个数分别是 【考点要求】本题考查对数字的观察及推理能力【思路点拨】钟面上的数字之和为78,依题意,三部分之和相等,则每部分之和只能为783=26,而图中钟面上的1、2、11、12之和已经为26,所以所画的这条线只能在图中这条直线的下方,即过4和5,8和9之间画直线【答案】3、4、9、10,5、6、7、8【误区警示】本题部分学生不知从何处入手,或者漫无目标的尝试去画,这样费时较多,而且容易达到目标突破方法:仔细阅读,认真分析,理清题意可减少尝试分割的次数例9我们把分子为1的分数叫做单位分数如,任何一个单位分数都可
17、以拆分成两个不同的单位分数的和,如,(1)根据对上述式子的观察,你会发现,请写出,所表示的数;(2)进一步思考,单位分数(n是不小于2的正整数),请写出,所表示的式,并加以验证【考点要求】本题考查学生对新信息的理解与运用【思路点拨】通过对三组式子的观察,不难找出规律等式右边的第一个分母是左边的分母加1,第二个分母是前两个分母的乘积,如果设左边的分母为n,则右边第一个分母为(n1),第二个分母为n(n1)所以问题(1)中,表示的数为6,表示的数为30;问题(2)中,表示的式为,表示的式为验证:,所以上述结论成立【答案】(1)表示的数为6,表示的数为30;(2)表示的式为,表示的式为【方法点拨】部
18、分学生不能看出题目已知条件中所反映出的规律突破方法:对比已知的三个式子,进行比较分析,可以看出每个等式中的各个分子都是1,而分母也特殊关系,得到这些信息后,完成解题不再困难解题关键:当题中有一组并列条件时,往往将它们放在一起进行观察、比较、分析,从中发现重要信息例10阅读下面的材料,回答问题:点A、B在数轴上分别表示实数a、b,A、B两点之间的距离表示为当A、B两点中有一点在原点时,不妨设点A在原点,如图1-3,;当A、B两点都不在原点时:(1)如图1-4,点A、B都在原点的右边,;O(A)0bB图1-3O0bB图1-4 aA(2)如图1-5,点A、B都在原点的左边, ;(3)如图1-6,点A
19、、B在原点的两边,BbaA图1-5O0BbaA图1-6O0综上,数轴上A、B两点之间的距离回答下列问题:(1)数轴上表示2和5的两点之间的距离是 ;数轴上表示2和5的两点之间的距离是 ;数轴上表示1和3的两点之间的距离是 (2)数轴上表示x和1的两点A和B之间的距离是 如果,那么x= 【考点要求】本题通过阅读材料,引出数轴上两点A、B的距离公式,再引出相关问题,考查学生阅读材料,获取新的信息和结论,然后应用所得结论,解答新问题的能力【思路点拨】依据阅读材料,所获得的结论为,结合各问题分别代入求解(1);(2);因为,所以,所以或所以或【答案】(1)3,3,4;(2)或【误区警示】部分学生因为题
20、目较长,阅读能力稍差的同学不易找出正确结论解题突破方法:反复阅读材料,从中获取重要结论,帮助解题难点突破方法总结实数是初中数学基础知识,中考试题中的实数问题各种题型都会涉及到,在解决实数问题时,要注意以下几点:1.要准确掌握各个概念概念是组成数学知识的基本元素实数一章中的概念较多,基础性强,对后续学习影响大,不少概念还含有运算性质如相反数、倒数、绝对值、算术平方根、负整数指数幂、科学记数法等,所以必须要弄清各个概念的区别或者联系,防止应考过程中出现混淆2.要熟练各种运算明白各种运算法则和运算性质,要通过一定量的练习使实数的有关运算形成一定的运算技能3.在解答有关实数的选择题、填空题和计算题时,
21、一般采用直接求解法对于体现创新意识的探索规律型问题,可采用图示、猜想、归纳、计算验证等各种方法整式和分式是代数中的重要内容,填空、选择题以基本概念为主,而解答题则以化简、求值为主一般要注意如下内容:1.要准确理解和辨析单项式次数、系数、同类项,分式的通分和约分、最简分式等概念的内涵特别要关注简单整式和分式的运算2.运用公式或法则进行计算,首先要判断题目是否具备某一公式或者法则的结构特征,在此基础上正确选用公式或法则进行计算3.灵活运用分式的基本性质、变号法则、因式分解、整体变换等解题技能进行分式的约分和通分运算4.充分关注数形结合思想、整体思想、分类讨论思想,在整式和分式变换求值中的应用5.此
22、外,试题呈现的背景贴近生活,贴近社会,而不再是拘泥于抽象的纯数学问题,因而要求学生要学会观察、分析、猜想、验证、表达等基本的解决辨别及解决问题的能力和策略第三关:五年真题剖析与规律总结2009年1的相反数是( D)A3BCD3今年6月,南宁市举行了第五届泛珠三角区域经贸合作洽谈会.据估算,本届大会合同投资总额达2260亿元.将2260用科学记数法表示为(结果保留2个有效数字)( A )ABCD14计算: 18正整数按图8的规律排列请写出第20行,第21列的数字 420第一行第二行第三行第四行第五行第一列第二列第三列第四列第五列1251017436111898712191615141320252
23、4232221图820先化简,再求值:,其中2008年1 (2008年南宁市)6的倒数是:(A) (B) (C)6 (D)6答案:A解析:本题考查倒数的概念,乘积是1的两个数互为倒数,故选A。2 (2008年南宁市)下列运算中,结果正确的是:(A) (B) (C) (D)答案:D解析:本题考查幂的运算和整式的加减,A是同底数幂数相除,底数不变,指数相减,应是,B是合并同类项,C是幂的乘方,底数不变,指数相乘,应是,D是同底数幂相乘,底数不变,指数相加,故D正确。9(2008年南宁市)2008年北京奥林匹克运动国家体育场“鸟巢”钢结构的材料,首次使用了我国科技人员自主研制的强度为帕的钢材,该数据
24、用科学记数法表示为 帕答案:解析:本题考查科学记数法的表示方法,科学记数法是指把一个数写成(其中,是整数)的形式,其中10的指数就是原数的整数位数减去1即可。13(2008年南宁市)因式分解: 答案:解析:分解因式一般遵循“先看有无公因式,再看能否套公式,切记分解要彻底”的原则进行。本题可先提公因式,分解成,而可利用平方差公式分解成。2007年1写出一个小于的数: (答案不唯一);4因式分解: 0图511实数在数轴上的位置如图5所示,则下列各式正确的是( C )ABCD20先化简,再求值:,其中原式4分 5分 6分 将代入上式得 原式7分 8分2006年4今年秋季,广西将有一百三十余万名义务教
25、育阶段的贫困学生享受到国家免费教科书政策,预计免费教科书发放总量为1500万册,发放总量用科学记数法记为万册(保留2个有效数字)9如图3,是硬币圆周上一点,硬币与数轴相切于原点(与点重合)假设硬币的直径为1个单位长度,若将硬币沿数轴正方向滚动一周,点恰好与数轴上点重合,则点对应的实数是2005年2005因式分解:按照广西高速公路网的规划,我区地方高速公路于2030年全部建成,建设里程为5353公里,总投资达1542.7亿元用科学记数法表示总投资为亿元(保留两位有效数字)12分式计算的结果是(D)(A)(B)(C)(D))第二讲:方程与不等式第一关:考点点睛一元一次方程考点一 方程解的应用例1(
26、2009芜湖)已知方程3x-9x+m=0的一个根是1,则m的值是 。 解题思路:根据方程解的定义,把方程的解x=1代入方程成立,然后解决关于m的方程即可, 解:把x=1代入原方程,得3-91+m=0, 解得m=6 答案:6点评:解题依据是方程解的定义,解题方法是把方程的解代入原方程,转化为关于待定系数的方程。考点二 巧解一元一次方程 例2(2008江苏)解方程: 解题思路:此题先用分配律简化方程,再解就容易了。 解:去括号,得 移项、合并同类项,得-x=6, 系数化为1,得x=-6 点评:解一元一次方程,掌握步骤,注意观察特点,寻找解题技巧,灵活运用分配委或分数基本性质等,使方程简化。 考点三
27、 根据方程ax=b解的情况,求待定系数的值例3已知关于x的方程无解,则a的值是( ) A.1 B.-1 C.1 D.不等于1的数 解题思路:需先化成最简形式,再根据无解的条件,列出a的等式或不等式,从而求出a的值。 解:去分母,得2x+6a=3x-x+6, 即0x=6-6a 因为原方程无解,所以有6-6a0, 即a1, 答案:D考点四 一元一次方程的应用 例4(2009福州)某班学生为希望工程共捐款131元,比每人平均2 元还多35元,设这个班的学生有x人,根据题意列方程为_。 解题思路:本题的相等关系是捐款总数相等,解决此题的关键是用学生人数、平均数与余数35元表示出捐款总数(2x+35)元
28、。答案:2x+35=131二元一次方程考点1:二元一次方程及其解例1:下列方程中,是二元一次方程的是( ) A3x2y=4z B6xy+9=0 C+4y=6 D4x=思路点拨:掌握判断二元一次方程的三个必需条件:含有两个未知数;含有未知数的项的次数是1;等式两边都是整式所以选D例2:二元一次方程5a11b=21 ( ) A有且只有一解 B有无数解 C无解 D有且只有两解思路点拨: 不加限制条件时,一个二元一次方程有无数个解所以选B考点2:二元一次方程组及其解例1:下列方程组中,是二元一次方程组的是( ) A思路点拨:二元一次方程组的三个必需条件:含有两个未知数,每个含未知数的项次数为1;每个方
29、程都是整式方程所以选A例2:已知x1+(2y+1)2=0,且2xky=4,则k=_思路点拨:由已知得x1=0,2y+1=0,x=1,y=,把代入方程2xky=4中,2+k=4,k=1考点3:二元一次方程组的应用例1 :某校初三(2)班40名同学为“希望工程”捐款,共捐款100元捐款情况如表:捐款(元)1234人数67表格中捐款2元和3元的人数不小心被墨水污染已看不清楚若设捐款2元的有x名同学,捐款3元的有y名同学,根据题意,可得方程组( )A. B. C. D.思路点拨:这是一道表格信息题,通过已知条件可发现两个等量关系:总人数为40人,总捐款金额100元利用表格信息可列方程组,故应选ACAB
30、12O例2 :如图,点O在直线AB上,OC为射线,比的3倍少,设,的度数分别为,那么下列求出这两个角的度数的方程是( ) A. B. C. D. 思路点拨:本题侧重考查学生的数形结合思想已知条件看似给了一个,其实还有一个隐含条件,即与互为邻补角利用它们可列方程组,故应选B分式方程考点1:分式的定义例1:请从下列三个代数式中任选两个构成一个分式,并化简该分式44 4 2A1 B. 2 C.3 D.4思路点拨:分母中含字母的代数式,都是分式,其他都不是。注意:(1)除外 ;(2)分式是形式定义,如化简之后为x,但是分式。答案:B 考点2:分式成立的条件例1:写出一个含有字母的分式(要求:不论取任何
31、实数,该分式都有意义) (答案不惟一)思路点拨:本题考查了分式成立的条件即分母不能为0例2:分式成立的条件是思路点拨:分式成立的条件是分母即x-20。答案:x2考点3:分式值为0的条件例:若分式的值为0,则x的值为( )A. 1B. -1C. 1D.2思路点拨:应同时具备两个条件:(1)分式的分子为零;(2)分式的分母不为零。答案:D考点4:分式的运算例1:已知,则代数式的值为 思路点拨:本类题主要考查分式的化简和代数式的值。在计算代数式的值时,一般先要求出其中字母的值再代入计算,但有时字母的值不能求出或不好求出,可以利用整体代入的方法来计算。这类题目一般都是先化简后代数。甚至有的不用代数。解
32、:当或时,的值均为2008,小明虽然把值抄错,但结果也是正确的.考点5.分式方程的解法例1:解分式方程:解:方程两边同乘,得,化简,得,解得,检验:时,是原分式方程的解例2:解方程:答案:设则原方程可化为2y2+y-6,解得,y2=-2,即,解得,经检验,是原方程的根思路点拨:解分式方程的基本思想是转化,即把分式方程转化为整式方程求解,具体步骤为“一去(去分母)、二解(解整式方程)、三检验(检查求出的根是否是增根)”。转化的方法有两种:(1)方程两边同乘最简公分母;(2)换元.要注意的是解分式方程必须要检验. 考点6:分式方程的增根例:当 时,关于的分式方程无解思路点拨:分式方程的增根是原分式
33、方程去分母后转化为整式方程的根,它使得最简公分母为0,所以原分式方程无解或者说分式方程有增根答案:-6一元二次方程一元二次方程是在一元一次方程及分式方程的基础上学习的,一元二次方程根与系数的关系以及一元二次方程的应用是中考的重点。题型多样,一般分值在69分左右。考点1:一元二次方程及其解法例1:方程的解是( )A,B,C,D, 思路点拨:考查一元二次方程的解法,一元二次方程的解法有:一是因式分解法;二是配方法;三是求根公式法此题可以用此三种方法求解,此题以因式分解法较简单,此式可以分解为(x1)(x2)=0,所以x1=0或x=0,解得x=,x=故此题选例2:若,则的值等于( )ABCD或思路点
34、拨:本题考查整体思想,即由题意知x2x=2,所以原式=,选A.考点2:一元二次方程的根与系数的关系例1:如果是方程的两个根,那么的值为:(A)1 (B)2 (C) (D)思路点拨:本题考查一元二次方程的根与系数关系即韦达定理,两根之和是, 两根之积是,易求出两根之和是2。答案:B例2:设一元二次方程的两个实数根分别为和,则 ,x1、x2思路点拨:本体考查一元二次方程根与系数的关系,x1、x2是一元二次方程ax2+bx+c=0(a0)的两根,则x1、+x2=,x1、x2=.要特别注意的是方程必须有实数根才能用这一结论,即=b24ac0.答案:7,3考点3:一元二次方程的应用例1:某商品经过两次连
35、续降价,每件售价由原来的55元降到了35元设平均每次降价的百分率为x,则下列方程中正确的是()A55 (1+x)2=35 B35(1+x)2=55C55 (1x)2=35 D35(1x)2=55思路点拨: 列一元二次方程解决实际问题是一个难点,但在中考试题中经常出现,所以我们要学好列方程解决实际问题。则需要在这方面加大训练力度。列方程的全过程,其步骤如下:1、弄清题意,正确理解,准确把握题目条件中的数量关系,必要时可用图表辅助分析;2、用字母表示问题中的一个未知数;3、将题设条件中的语句都“翻译”成含有“字母”的代数式;4、寻找等量关系,列出方程.因为增长率问题是“加”;下降率问题是“减”,所
36、以本题正确的是55 (1x)2=35.所以本题选C.不等式及不等式组不等式及不等式组,它是在学习方程的基础上进行学习的,不等式的性质和应用在中考中有着比较广泛的出现,分值在3-6分左右,经常与一次函数相结合,考查最值问题或者方案设计。考点1:不等式及其性质例1:已知有理数在数轴上对应的点如图1所示,则下列式子正确的是( )xA BC D思路点拨:由图1可知:0a1,b1,所以ab|a|,a+ba;xb;axb(a2。解不等式,得x1。所以不等式组的解集为2x1,故选C。考点4:用不等式(组)解决实际问题例:学校为家远的同学安排住宿,现有房问若干间,若每间住5人,则还有14人安排不下;若每间住7
37、人,则有一间房有人住但还余床位问学校可能有几间房间可以安排同学住宿?住宿的学生可能有多少人?思路点拨:由于题目中既不知道有多少房间也不知道有多少住宿的学生,因而感到此题无法处理但注意到:若每间住5人,则还有14人安排不下,可设学校有房问x间从而可知住宿的学生有(5x+14)人;然生再根据每问住7人,未住满可以列出不等式 解:设学校有房间x间,则可住宿的学生有(5x+14)人 依题意,得7(x-1)(5x+14)7x,7x10.5,由于x取整数,故x可取8、9、10那么,相应的住宿人数为54人、59人、64人第二关:难点攻克难点透视例1解方程: 【考点要求】本题考查了分式方程的解法【思路点拨】去分母将分式方程转化为整式方程是解分式方程的基本方法,验根只需将结果代入最简公分母即可原方程变形为方程两边都乘以,去分母并整理得,解这个方程得经检验,是原方程的根,是原方程的增根原方程的根是【答案】【方法点拨】部分学生在解分式方程时,往往不能拿到全部分数,其中很多人是因为忘记检验突破方法:牢牢记住分式方程必须验根