资源描述
诊断诊断基础知识基础知识突破突破高频考点高频考点培养培养解题能力解题能力第第8讲曲线与方程讲曲线与方程诊断诊断基础知识基础知识突破突破高频考点高频考点培养培养解题能力解题能力最新考纲1了解方程的曲线与曲线的方程的对应关系2了解解析几何的基本思想和利用坐标法研究曲线的简单性质3能够根据所给条件选择适当的方法求曲线的轨迹方程.诊断诊断基础知识基础知识突破突破高频考点高频考点培养培养解题能力解题能力知 识 梳 理1曲线与方程一般地,在平面直角坐标系中,如果某曲线C上的点与一个二元方程f(x,y)0的实数解建立了如下关系:(1)曲线上点的坐标都是 (2)以这个方程的解为坐标的点都是 那么这个方程叫做曲线的方程,这条曲线叫做 这个方程的解 曲线上的点 方程的曲线 诊断诊断基础知识基础知识突破突破高频考点高频考点培养培养解题能力解题能力2求动点轨迹方程的一般步骤(1)建立适当的坐标系,用有序实数对(x,y)表示曲线上任意一点M的坐标(2)写出适合条件p的点M的集合PM|p(M)(3)用坐标表示条件p(M),列出方程 ,并化简(4)说明以化简后的方程的解为坐标的点都在曲线上f(x,y)0 诊断诊断基础知识基础知识突破突破高频考点高频考点培养培养解题能力解题能力无交点 诊断诊断基础知识基础知识突破突破高频考点高频考点培养培养解题能力解题能力诊断诊断基础知识基础知识突破突破高频考点高频考点培养培养解题能力解题能力诊断诊断基础知识基础知识突破突破高频考点高频考点培养培养解题能力解题能力诊断诊断基础知识基础知识突破突破高频考点高频考点培养培养解题能力解题能力感悟提升1曲线与曲线的方程是两个不同概念,曲线的方程需满足两个条件:一是曲线上点的坐标都是该方程的解;二是以该方程的解为坐标的点都是曲线上的点如(2)错误理解了曲线方程的含义2求轨迹方程,要注意曲线上的点与方程的解是一一对应关系,检验应从两个方面进行:一是方程的化简是否是同解变形;二是是否符合实际意义,注意轨迹上特殊点对轨迹的“完备性与纯粹性”的影响.诊断诊断基础知识基础知识突破突破高频考点高频考点培养培养解题能力解题能力(1)求mn的值;(2)求动点P的轨迹方程,并说明它表示什么曲线?诊断诊断基础知识基础知识突破突破高频考点高频考点培养培养解题能力解题能力诊断诊断基础知识基础知识突破突破高频考点高频考点培养培养解题能力解题能力诊断诊断基础知识基础知识突破突破高频考点高频考点培养培养解题能力解题能力诊断诊断基础知识基础知识突破突破高频考点高频考点培养培养解题能力解题能力【训练1】(2013陕西卷选编)已知动圆过定点A(4,0),且在y轴上截得弦MN的长为8.试求动圆圆心的轨迹C的方程诊断诊断基础知识基础知识突破突破高频考点高频考点培养培养解题能力解题能力诊断诊断基础知识基础知识突破突破高频考点高频考点培养培养解题能力解题能力考点二定义法(待定系数法)求轨迹方程【例2】一动圆与圆x2y26x50外切,同时与圆x2y26x910内切,求动圆圆心M的轨迹方程,并说明它是什么曲线诊断诊断基础知识基础知识突破突破高频考点高频考点培养培养解题能力解题能力诊断诊断基础知识基础知识突破突破高频考点高频考点培养培养解题能力解题能力规律方法 求轨迹方程时,若动点与定点、定线间的等量关系满足圆、椭圆、双曲线、抛物线的定义,则可以直接根据定义先定轨迹类型,再写出其方程,这种求轨迹方程的方法叫做定义法,其关键是准确应用解析几何中有关曲线的定义诊断诊断基础知识基础知识突破突破高频考点高频考点培养培养解题能力解题能力诊断诊断基础知识基础知识突破突破高频考点高频考点培养培养解题能力解题能力诊断诊断基础知识基础知识突破突破高频考点高频考点培养培养解题能力解题能力诊断诊断基础知识基础知识突破突破高频考点高频考点培养培养解题能力解题能力审题路线(1)设出点A的坐标利用对称性表示S矩形ABCD,并确定矩形ABCD面积取得最大值的条件进而求出t值(2)点M受点A的变化制约根据点A满足的方程求出点M的轨迹方程诊断诊断基础知识基础知识突破突破高频考点高频考点培养培养解题能力解题能力诊断诊断基础知识基础知识突破突破高频考点高频考点培养培养解题能力解题能力诊断诊断基础知识基础知识突破突破高频考点高频考点培养培养解题能力解题能力规律方法(1)一是本题的轨迹方程中,要求x3,y0,所以求解时要结合几何性质和几何图形直观细心发掘二是求解中充分运用椭圆与圆的对称性,以及方程的整体代入,避免繁琐运算,优化解题过程(2)相关点法求轨迹方程:形成轨迹的动点P(x,y)随另一动点Q(x,y)的运动而有规律地运动,而且动点Q的轨迹方程为给定的或容易求得的,则可先将x,y表示成关于x,y的式子,再代入Q的轨迹方程,求出动点P的轨迹方程诊断诊断基础知识基础知识突破突破高频考点高频考点培养培养解题能力解题能力诊断诊断基础知识基础知识突破突破高频考点高频考点培养培养解题能力解题能力诊断诊断基础知识基础知识突破突破高频考点高频考点培养培养解题能力解题能力诊断诊断基础知识基础知识突破突破高频考点高频考点培养培养解题能力解题能力1通过坐标法,由已知条件求轨迹方程,通过对方程的研究,明确曲线的位置、形状以及性质是解析几何的核心问题2求轨迹方程的常用方法(1)直接法:直接利用条件建立x,y之间的关系F(x,y)0.(2)待定系数法:已知所求曲线的类型,求曲线方程(3)定义法:先根据条件得出动点的轨迹是某种已知曲线,再由曲线的定义直接写出动点的轨迹方程(4)代入(相关点)法:动点P(x,y)依赖于另一动点Q(x0,y0)的变化而运动,常利用代入法求动点P(x,y)的轨迹方程 诊断诊断基础知识基础知识突破突破高频考点高频考点培养培养解题能力解题能力诊断诊断基础知识基础知识突破突破高频考点高频考点培养培养解题能力解题能力诊断诊断基础知识基础知识突破突破高频考点高频考点培养培养解题能力解题能力诊断诊断基础知识基础知识突破突破高频考点高频考点培养培养解题能力解题能力诊断诊断基础知识基础知识突破突破高频考点高频考点培养培养解题能力解题能力诊断诊断基础知识基础知识突破突破高频考点高频考点培养培养解题能力解题能力诊断诊断基础知识基础知识突破突破高频考点高频考点培养培养解题能力解题能力反思感悟 对题目涉及的变量巧妙的引进参数(如设动点坐标、动直线方程等),利用题目的条件和圆锥曲线方程组成二元二次方程组,再化为一元二次方程,从而利用根与系数的关系进行整体代换,达到“设而不求,减少计算”的效果,直接得定值诊断诊断基础知识基础知识突破突破高频考点高频考点培养培养解题能力解题能力诊断诊断基础知识基础知识突破突破高频考点高频考点培养培养解题能力解题能力诊断诊断基础知识基础知识突破突破高频考点高频考点培养培养解题能力解题能力 答案D
展开阅读全文