收藏 分销(赏)

微生物降解四环素类抗生素的研究进展_王振楠.pdf

上传人:自信****多点 文档编号:463183 上传时间:2023-10-12 格式:PDF 页数:8 大小:2.02MB
下载 相关 举报
微生物降解四环素类抗生素的研究进展_王振楠.pdf_第1页
第1页 / 共8页
微生物降解四环素类抗生素的研究进展_王振楠.pdf_第2页
第2页 / 共8页
微生物降解四环素类抗生素的研究进展_王振楠.pdf_第3页
第3页 / 共8页
亲,该文档总共8页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述

1、农业环境科学学报Journal of AgroEnvironment Science2022,41(12):2779-27862022年12月王振楠,白默涵,李晓晶,等.微生物降解四环素类抗生素的研究进展J.农业环境科学学报,2022,41(12):2779-2786.WANG Z N,BAI M H,LI X J,et al.Research progress on the microbial degradation of tetracycline antibiotics J.Journal of Agro-Environment Science,2022,41(12):2779-2786.

2、开放科学OSID微生物降解四环素类抗生素的研究进展王振楠,白默涵,李晓晶,翁莉萍,叶会科*(农业农村部环境保护科研监测所,天津 300191)Research progress on the microbial degradation of tetracycline antibioticsWANG Zhennan,BAI Mohan,LI Xiaojing,WENG Liping,YE Huike*(Agro-Environmental Protection Institute,Ministry of Agriculture and Rural Affairs,Tianjin 300191,C

3、hina)Abstract:With the intensification of the use of antibiotics in the aquaculture industry,the problem of antibiotic pollution caused bymanure application is becoming increasingly serious.The use of microorganisms to degrade antibiotics in the environment is an effectivestrategy to address this pr

4、oblem,and it has attracted extensive attention.In this paper,the degradation methods of tetracycline antibiotics(TCs)and the research status of the microbial degradation of TCs are reviewed.Moreover,the influencing factors,degradation pathways,and molecular mechanisms of the microbial degradation of

5、 TCs are introduced in detail.On this basis,the microbial degradation oftetracycline from laboratory research to practical production and applications are discussed,and the focus of future research is suggested.This paper provides an in-depth understanding of the microbial remediation of tetracyclin

6、e,and ideas for tetracycline pollution remediation.Keywords:tetracycline;microbial degradation;degradation pathway;degradation mechanism;bioremediation收稿日期:2022-11-21录用日期:2022-12-08作者简介:王振楠(1999),女,山东临沂人,硕士研究生,从事有机污染物生物降解研究。E-mail:*通信作者:叶会科E-mail:基金项目:中央级公益性科研院所基本科研业务费(2022-jbkyywf-yhk);天津市自然科学基金项目(

7、20JCYBJC01590)Project supported:Central Public-interest Scientific Institution Basal Research Fund(2022-jbkyywf-yhk);The Natural Science Foundation of Tianjin,China(20JCYBJC01590)摘要:随着抗生素在养殖行业使用加剧,施用粪肥导致的抗生素污染问题日趋严重,微生物降解抗生素作为解决这一问题的有效途径受到人们的广泛关注。本文综述了四环素类抗生素(TCs)的降解方法和微生物降解四环素类抗生素的研究现状,并对微生物降解四环素类抗

8、生素的影响因素、降解路径以及其降解的分子机制进行了详细介绍。在此基础上,对微生物降解四环素类抗生素从实验室研究到实际生产应用进行了展望,指出了未来研究关注的重点。本文以期为人们深入认识四环素类抗生素的微生物修复提供参考,同时为四环素类抗生素的污染修复提供思路。关键词:四环素;微生物降解;降解途径;降解机制;生物修复中图分类号:X172;X713文献标志码:A文章编号:1672-2043(2022)12-2779-08doi:10.11654/jaes.2022-1188作为农业大国,我国的养殖业规模居世界前列。在畜禽养殖中应用抗生素会获得丰厚的经济效益,同时饲料中添加少量的抗生素可以对动物的生

9、长起到促进作用,这就使得抗生素成为养殖业不可或缺的添加剂之一1。2019年与2020年我国兽用抗菌药使用总量分别为30 903.66 t和32 776.30 t,其中用量最大的均是四环素类抗生素,分别为 11 297.65 t(占比36.56%)和10 002.73 t(占比30.52%)。四环素类抗生素是指四环素、土霉素、金霉素、多西环素、米诺环素等具有共同多环并四苯羧基酰胺母核的广谱抗菌药物,主要应用于医药和农业两方面2-3。养殖人员过度追求经济效益,为避免养殖动物的死亡而超限额滥农业环境科学学报第41卷第12期用抗生素的现象普遍存在。养殖动物通过饲料、用药等途径摄入抗生素,但摄入的抗生素

10、中仅有 10%70%可被动物体吸收,其余部分以原药母体或其代谢物的形式排出体外,从而导致动物排泄物中有大量的抗生素残留,抗生素随着粪污的分解进入土壤,或通过雨水的冲刷进入到地表水、地下水、湖泊等水体中4-5。ZHAO等6对中国8个省份饲养场牲畜粪便中3种常用兽用抗生素残留的研究发现,四环素类抗生素的浓度水平与氟喹诺酮相似,且远高于磺胺浓度。这些残留于环境中的抗生素,对食品安全、人体健康以及公共环境卫生安全也造成了严重的危害。尽管抗生素可以高效地杀灭一些微生物,但在长时间接触抗生素的环境下,微生物可以逐渐适应抗生素而产生耐药性,并诱导产生抗性基因,尤其在普遍使用富含抗生素有机肥的农田土壤中,抗生

11、素抗性基因的丰度显著增加。一旦这些耐药基因通过遗传元件在微生物之间相互传播,将使抗生素不再能有效治疗相应疾病,从而对人类健康造成严重威胁。因此,对环境中四环素的去除迫在眉睫,而使用微生物对四环素进行降解也越来越引起人们的关注。1四环素类抗生素的降解方法1.1 四环素类抗生素的非生物降解方法目前非生物降解四环素的方法有物理降解和化学降解。物理降解是指通过活性炭等吸附剂将四环素类抗生素吸附从而达到消除的目的,其优点是生物炭为可再生资源、无污染。由于活化生物炭的低度疏水性以及较高的比表面积使得活化生物炭具有较高的吸附金霉素的能力,并且随着pH升高其降解能力降低7。CHOI等8通过混凝活性炭和颗粒活性

12、炭两种方式去除四环素类抗生素,研究表明在最优条件下,43%94%的四环素类抗生素可被降解。研究者在进行颗粒活性炭实验时,使用了煤质活性炭和椰壳活性炭两种过滤柱,发现使用煤质活性炭的降解效率比椰壳活性炭高,可降解超过68%的四环素类抗生素,这是由于煤质颗粒活性炭比椰壳活性炭拥有更大的可以用于吸附的孔体积8。四环素类抗生素的化学降解一般包括氧化降解和光降解等。臭氧可以将四环素直接氧化降解,研究发现二氧化钛光催化法可以有效降解四环素,且其降解速率随着pH、溶解氧浓度的增加而增加,在紫外光照射下 40 min内可降解约 90%的四环素9。光催化也可以降解四环素,光催化降解抗生素的机理为光激发光催化剂产

13、生光生电子和光生空穴,光生电子将O2还原成O-2,光生空穴将抗生素分子或水氧化成 OH,而后通过自由基将抗生素分子氧化分解为小分子物质,并最后矿化为二氧化碳和水10。叶林静等11合成了ZnO/CdS复合光催化剂对四环素类抗生素进行光催化研究,发现其对盐酸四环素、土霉素和强力霉素3 种四环素类抗生素的光催化降解率分别达到81.65%、70.68%和54.61%。1.2 四环素类抗生素的微生物降解方法四环素类抗生素的生物降解是指利用生物将抗生素降解为小分子化合物的一系列过程。堆肥是降解四环素常用的微生物降解方法,其降解受堆体湿度、温度、总氮、总磷和C/N等参数影响12。WU等13研究发现在中试规模

14、猪粪堆肥降解金霉素、土霉素、四环素3种抗生素过程中,四环素类抗生素的浓度在3周内达到平衡,其降解行为主要发生在嗜热阶段,且金霉素、土霉素和四环素的去除率分别为 74%、92%和70%。堆肥可以防止作物受到病原体污染并降低粪便运输成本,粪便堆肥后施入土壤可消除抗生素的污染,但是堆肥降解四环素过程的周期较长,并且可控性差、不稳定。随着技术的发展,学者们通过使用真菌胞外酶对四环素类抗生素进行降解,由白腐真菌产生的细胞外木质素降解酶可以分解多环芳烃,降解四环素等抗生素。WEN等14探究了黄孢子菌产生的锰过氧化物酶对抗生素的降解,在初始浓度为50 mgL-1四环素和50 mgL-1土霉素处理下,降解率在

15、5 min内达到95%左右。此外,研究者还分离出多种可以高效降解四环素的菌种,纯培养微生物降解四环素的研究将在下文中进一步综述。2微生物降解四环素的研究现状近年来,学者们对四环素类抗生素的微生物修复进行了大量的相关研究,且大多集中在高效降解菌种分离筛选以及降解菌降解条件优化上。2.1 四环素类抗生素高效降解菌在高效降解菌菌株分离筛选的研究中,多种降解菌从土壤、污水、底泥以及废弃物等各类环境中被陆续筛选分离出来。光合细菌、乳酸菌、放线菌、酵母菌、发酵丝状菌、芽孢杆菌、枯草杆菌、硝化细菌、酵母等均被证明具有降解抗生素的功能15-18。ZHANG 等19从牛粪中分离出蜡样芽孢杆菌LZ01,采用响应面

16、法确定了在其最佳降解条件下48 h内可降解80.39%的四环素类抗生素。YIN等20从鸡2780王振楠,等:微生物降解四环素类抗生素的研究进展2022年12月粪混合物中分离出有效降解四环素的菌株Klebsiellasp.strain TR5,研究发现以葡萄糖为碳源,酵母提取物粉末为氮源,初始pH 7.0,温度25,转速为180 rmin-1时为其生物降解最佳条件,此条件下在初始四环素浓度为 200 mgL-1时,36 h 内降解率达 90%。LENG 等21富集筛选出一株 Stenotrophomonas maltophilia DT1,其在30、pH为9的环境下4 d内可降解90%的四环素,

17、但是菌株DT1在液体培养基中无法生长,四环素不能作为其唯一的碳源和能量来源。TAN等22从土壤中筛选出一株四环素高效降解菌Sphingobacterium changzhouense TC931,其通过非生物降解、生物降解、生物吸附在 3 d 内可除去 87.38%的四环素。虽然纯菌可以降解转化四环素,但是其降解效率比较低,因此LIU等23研究了联合菌体下四环素的降解效应,发现 Bacillus amyloliquefaciens HM618 和 Bacillus clausii T共培养比单菌对四环素类抗生素的降解 效 率 更 高,这 是 由 于 Bacillus amyloliquefac

18、iensHM618产生的表面活性剂,可以促进Bacillus clausii T更好地生长,从而提高其生物量。关于可降解四环素的纯培养细菌,目前分离得到的 菌 种 包 括 Stenotrophomonas maltophilia DT121、Sphingobacterium sp.strain PM2-P1-2924、Bacteroidesthetaiotaomicron25、Klebsiella sp.SQY526、Klebsiella sp.TTC-127、Trichosporon mycotoxinivorans sp.XPY-1028、Advenella sp.400229等。研究者从

19、不同的环境中将上述菌株分离出来,并通过实验室优化等方法提升这些菌对四环素的降解能力。这些菌株在 32168 h内,可将四环素类抗生素降解60%90%,具有较好的四环素降解效率。因此,使用可培养微生物对四环素类抗生素进行降解具有可行性。2.2 四环素类抗生素微生物降解的影响因素微生物生长受到外界环境因素的影响,包括温度、pH以及营养物质等,而这些外界因素在一定程度上也能够影响四环素的降解。一方面,四环素自身的降解受这些因素的影响;另一方面,外界环境通过影响生物酶而导致四环素的降解受到影响。温度是影响微生物降解四环素类抗生素必不可少的条件,温度可以影响细菌酶的活性。根据碰撞原理,温度越高反应速率越

20、高,引起颗粒之间碰撞更多,从而增加了与细菌的接触面积,因此在微生物适宜生长的温度范围内,温度越高,细菌的酶活性越强,降解速率越大26。环境中的酸碱度可以通过影响酶的活性和微生物的生长从而影响降解速率,当外界环境呈酸性时,四环素能够形成差向异构化,该反应是可逆的,同时差向异构化的四环素可与水中的氢离子形成新的化合物30。差向异构体4-四环素(ETC)、4-表土霉素(EOTC)和4-表金霉素(ECTC)可以在pH 26之间可逆地形成31。强酸性条件会促进脱水四环素的形成,同时也能以相同的方式转化为相应的差向异构体。虽然大多数脱水四环素是稳定的,但脱水土霉素非常不稳定,其可以迅速形成-OTC 和-O

21、TC13。营养物质是微生物生长必不可少的前提,如微生物生长所必需的碳氮源和生长因子32,有些菌株可以只用四环素作为自己生长的能量物质,而有的需要增加额外的碳氮源。使用微生物对有机污染的土壤进行修复,一般是通过微生物将有机物进行转化、降解从而生成低毒甚至无毒的产物,而这一系列过程既有胞内作用,又有胞外作用。在胞外作用中,微生物通过分泌胞外酶对有机污染物进行降解转化,而在这个过程中,特异的胞外酶是有机污染物进行降解转化的关键。有机污染物能够通过主动运输、被动扩散、胞吞等作用进入微生物细胞内,之后同样是通过胞内酶将有机污染物降解转化为小分子物质,直至微生物能够消化利用或通过胞吐等作用将代谢物排出体外

22、。在微生物对四环素类抗生素降解的过程中,生物酶发挥了不可替代的作用:PARK等33利用谷胱甘肽硫转移酶(GSTs)对四环素进行降解,结果显示利用该酶作用于四环素,其降解转化产物的生物毒性远低于四环素母体毒性,同时其降解转化率高达 70%左右。利用白腐真菌(Phanerochaete chrysosporium)对四环素进行降解转化也是当前的一个研究热点,该菌能够产生多种胞外酶,包括木质素分解酶、锰过氧化物酶等均能够高效降解四环素,同时该菌生产的木质素过氧化物酶、漆酶等均具有去除四环素的潜力34。WEN等14,35的研究发现过氧化物酶和锰过氧化物酶对四环素和土霉素均有较强的降解作用,在最优条件下

23、四环素的降解效率高达95%左右。YANG等36的研究发现漆酶能使初始浓度为100 mgL-1的四环素在48 h内被完全降解,且在12 h内对四环素的降解效率高达80%以上。此外,有学者证明平菇菌丝对土壤中土霉素的降解转化也有一定的功效,平菇菌丝能够将土霉素降解转化为低毒甚至无毒的代谢产物37。2.3 四环素类抗生素的微生物降解路径微生物对污染物的降解转化作用主要是通过微生物酶进行催化,使有机污染物分子结构上的官能团2781农业环境科学学报第41卷第12期等发生转化、去除等,从而改变有机污染物本身的结构,最终导致污染物毒性及活性降低直至消失,而在这些过程中通常发生一系列的酶促化学反应,包括氧化反

24、应、还原反应、基团转移、水解反应等,其中也包括酯化、缩合、脱氢、脱甲基、脱氨基、双键断裂等反应。而四环素作为有机物的一种,其在降解过程中,同样要经过上述多种化学作用。微生物降解法去除环境中四环素类抗生素的原理是在微生物代谢过程中使其分子结构发生改变,将大分子化合物降解为小分子化合物,或者通过结构变化减弱或去除其抑菌/杀菌作用,最终实现四环素类抗生素对环境的无害化。差向异构以及脱水代谢物是四环素类抗生素常见的代谢产物,除此之外,在实际环境中,还有一系列的衍生物被检测到。TAN等22发现四环素降解的第一步是 C-4处二甲氨基的去甲基化。LLORCA 等38通过对漆酶降解四环素的产物进行检测,发现了

25、3种代谢产物,同时也提出在漆酶降解四环素过程中分别经历了脱羟基、脱甲基以及氧化作用。DE CAZES等39通过对固定化漆酶协同氧化还原助剂对四环素的降解产物进行研究,结果显示四环素转化成了土霉素和脱水土霉素等产物。SHAO 等40对克雷伯氏菌SQY5降解四环素的研究发现:四环素生物降解是胞内酶、胞外酶协同微生物菌体共同作用的结果,通过对四环素降解贡献率的计算结果显示,菌体对四环素降解率的贡献最大;同时对其降解产物进行检测,检测出了 A445、B461、C454、D427、E400、F385、G279、H429和I429共9种降解产物;根据代谢产物推测,该菌对四环素的生物降解过程主要是经过氧化、

26、水解开环、脱羰基化、脱胺基化、脱羟基化和脱甲基化等一系列反应进行的(图1)。LENG等21通过对嗜麦芽窄食单胞菌 DT1生物降解四环素的主要产物进行检测,发现主要的生物降解产物是C20H19O8N2,同时还捕获到了 TP 431、TP 415、TP 387、TP 370、ISO-TP 415、ISO-TP 387共6种降解产物,根据其降解产物推测该菌对四环素的生物降解途径,分别经过了脱甲基、脱氢、脱羰基和脱氨基等一系列的生物化学作用,而最终达到四环素的降解转化(图2)。对微生物降解四环素过程中的“碎片”进行识别,有助于推测四环素的微生物降解路径,并且在微生物体内可能存在多种降解路径并行的情况,

27、除氧化还原、脱羧、异构、缩合等作用,不同菌株对四环素的降图1 克雷伯氏菌SQY5对四环素的生物降解途径40Figure 1 Biodegradation pathway of tetracycline by bacterial strain Klebsiella sp.SQY5402782王振楠,等:微生物降解四环素类抗生素的研究进展2022年12月解作用存在明显差异,同时四环素的降解产物也存在未检测到等问题。2.4 四环素类抗生素的微生物降解分子机制当前学者们发现的可能降解四环素的基因包括甲基转移酶编码基因、异构酶编码基因、乙酰转移酶、O-磷酸转移酶、N-乙酰转移酶,这些基因是在降解四环素的

28、菌株TR5的质粒上发现的,而甲基转移酶编码基因也同时在蜡样芽孢杆菌LZ01中被发现19。WU等41对四环素高效降解菌Pandoraea sp.XY-2的基因组进行分析,发现了一系列四环素降解和抗性基因,图2 嗜麦芽窄食单胞菌DT1对四环素的生物降解途径21Figure 2 Biodegradation pathway of tetracycline by bacterial strain Stenotrophomonas maltophilia DT1212783农业环境科学学报第41卷第12期AA6家族成员编码基因、GSTs编码基因和一些四环素抗性基因,如外排泵编码基因tetA(48)和te

29、tG、核糖体保护蛋白编码基因 tetB(P)和 tetT、tetR。tetR基因可以编码多药物结合蛋白 AcrR,多药物结合蛋白AcrR可调节多药耐药外排泵AcrAB表达的转录阻遏物40。LESKI等42发现了可以使四环素失活的黄素依赖性单加氧酶编码基因 tet(X)的菌株,如阴沟肠杆菌、肺炎克雷伯菌等。YANG等43对四环素抗性基因tetX进行研究发现,该基因表达的单氧化酶能够将四环素C11a位上的双酮羟基化生成羟基化酮,从而发生氧化反应。SHAO等40发现菌株SQY5含有四环素生物降解的特定酶基因,如单加氧酶基因、双加氧酶基因、脱氢酶基因、过氧化物酶基因,这些酶与四环素的羟基化和氧化还原密

30、切相关。LENG等21通过对嗜麦芽窄食单胞菌进行基因组检测,并对其结果进行分析发现,该菌基因组中含有FAD-单加氧酶、tetX、过氧化物酶等多个四环素生物降解的功能基因,从而促进了四环素的生物降解。XU等44对污泥厌氧消化过程中的相关功能基因进行了分析,结果显示长期的抗生素(四环素、土霉素等)胁迫导致与碳水化合物代谢和脂肪酸降解相关的功能基因丰度均降低。YADAV等45通过对细菌 Paenibacillus lautus BHU3 进行基因组测序,并对结果进行分析,发现该菌中共有316个与碳水化合物代谢相关的编码基因可能参与了四环素的生物降解。由此可知,针对四环素微生物降解的功能基因、功能酶等

31、已经有所研究,且主要集中在抗生素抗性基因,氧化还原基因以及生物化学反应的相关水解、开环、羟基化等功能基因,而其代谢通路则主要集中在抗生素的生物降解、微生物代谢、抗生素的生物降解酶基因合成等通路以及这些通路上的相关酶。3未来趋势及其前景使用微生物对四环素类抗生素进行降解已经引起越来越多的学者们的关注,在未来,因其绿色、安全、彻底、代价小等诸多优点必将有非常广阔的前景。然而,将微生物降解四环素类抗生素应用至实际生产中,则需对其进行进一步的深入研究,具体包括以下几个方面:(1)当前的研究已经分离筛选出一批四环素高效降解土著菌,但在实际应用中,要考虑土壤及水环境的复杂性,如何在实际土壤和水环境中定殖是

32、当前的一大难题;此外,高效降解菌一般是在四环素的选择压力下分离筛选得到,具有较强的抗性,如何保证其生物安全及其生态风险的评价也是从实验室迈向应用的一个问题。(2)在四环素降解代谢路径的研究中,当前的大部分研究均是根据产物碎片进行推测,而且在降解途径中也存在一系列产物未检测到等问题。此外,四环素降解产物与其母体相比的毒性或生态风险等问题,也是当前应考虑的问题。(3)四环素的微生物降解机理研究中,尽管有了一系列的降解基因、降解酶等,但其中的分子机制还不够明晰,大部分研究仅停留在推测,获取可能的结果,针对降解基因的深入研究应对其进行功能验证等,以为后续构建工程菌株奠定基础,同时对生物酶的研究也可为酶

33、制剂的发展提供广阔的前景。参考文献:1 HU Y,CHENG H.Health risk from veterinary antimicrobial use in Chinas food animal production and its reductionJ.Environmental Pollution,2016,219:993-997.2 王瑞,魏源送.畜禽粪便中残留四环素类抗生素和重金属的污染特征及其控制J.农业环境科学学报,2013,32(9):1705-1719.WANG R,WEI Y S.Pollution and control of tetracyclines and he

34、avymetals residues in animal manureJ.Journal of Agro-Environment Science,2013,32(9):1705-1719.3 魏清文.几种四环素类抗生素在兽医临床上的应用J.当代畜牧,2020(2):32-33.WEI Q W.Application of several tetracycline antibiotics in veterinary clinicJ.Contemporary Animal Husbandry,2020(2):32-33.4 SARMAH A K,MEYER M T,BOXALL A B A.A g

35、lobal perspectiveon the use,sales,exposure pathways,occurrence,fate and effects of veterinary antibiotics(VAs)in the environmentJ.Chemosphere,2006,65(5):725-759.5 曾巧云,丁丹,檀笑.中国农业土壤中四环素类抗生素污染现状及来源研究进展J.生态环境学报,2018,27(9):1774-1782.ZENGQ Y,DING D,TAN X.Pollution status and sources of tetracycline antibi

36、otics in agricultural soil in China:A reviewJ.Ecology and Environmental Sciences,2018,27(9):1774-1782.6 ZHAO L,DONG Y H,WANG H.Residues of veterinary antibiotics inmanures from feedlot livestock in eight provinces of ChinaJ.Science ofthe Total Environment,2010,408(5):1069-1075.7 TAHERAN M,NAGHDI M,B

37、RAR S K,et al.Adsorption study of environmentally relevant concentrations of chlortetracycline on pinewoodbiocharJ.Science of the Total Environment,2016,571:772-777.8 CHOI K J,KIM S G,KIM S H.Removal of antibiotics by coagulationand granular activated carbon filtrationJ.Journal of Hazardous Material

38、s,2008,151(1):38-43.9 ZHU X D,WANG Y J,SUN R J,et al.Photocatalytic degradation of tetracycline in aqueous solution by nanosized TiO2J.Chemosphere,2013,2784王振楠,等:微生物降解四环素类抗生素的研究进展2022年12月92(8):925-932.10 卢鹏,胡雪利,张桂枝,等.光催化技术在降解微污染物抗生素中的应用研究J.应用化工,2020,49(9):2358-2363.LU P,HU XL,ZHANG G Z,et al.Applica

39、tion of photocatalytic technology in degradation of micro-pollutant antibioticsJ.Applied Chemical Industry,2020,49(9):2358-2363.11 叶林静,安小英,姜韵婕,等.ZnO/CdS 复合光催化剂的制备及降解四环素类抗生素J.化工进展,2015,34(11):3944-3950.YEL J,AN X Y,JIANG Y J,et al.Preparation of ZnO/CdS compositephotocatalyst and its degradability on

40、 tetracycline antibioticJ.Chemical Industry and Engineering Progress,2015,34(11):3944-3950.12 冯栋梁,封林玉,张倚剑,等.猪粪堆肥过程中四环素类抗生素的生物转化及降解研究进展J.生态毒理学报,2020(4):45-55.FENG D L,FENG L Y,ZHANG Y J,et al.Advances in biotransformation and degradation of tetracycline antibiotics during compostingof pig manureJ.Asi

41、an Journal of Ecotoxicology,2020(4):45-55.13 WU X,WEI Y,ZHENG J,et al.The behavior of tetracyclines andtheir degradation products during swine manure compostingJ.Bioresource Technology,2011,102(10):5924-5931.14 WEN X,JIA Y,LI J.Enzymatic degradation of tetracycline and oxytetracycline by crude manga

42、nese peroxidase prepared from Phanerochaete chrysosporiumJ.Journal of Hazardous Materials,2010,177(1/2/3):924-928.15 冯军宝.高效降解多种抗生素菌株的筛选及降解特性研究D.三亚:海南热带海洋学院,2022.FENG J B.Study on screening anddegradation characteristics of highly efficient antibiotic degradationstrainsD.Sanya:Hainan Tropical Ocean U

43、niversity,2022.16 王梓竹,刘泽,胡胜杰,等.四环素降解菌的筛选及其降解特性研究J.饲料研究,2020,43(10):64-68.WANG Z Z,LIU Z,HU SJ,et al.Screening and degradation characteristics of tetracycline-degrading bacteriaJ.Feed Research,2020,43(10):64-68.17 刘伟,王慧,陈小军,等.抗生素在环境中降解的研究进展J.动物医学进展,2009,30(3):89-94.LIU W,WANG H,CHEN X J,etal.Progress

44、 on degradation of antibiotics in environmentJ.Progressin Veterinary Medicine,2009,30(3):89-94.18 王立群,孙文,章广德,等.典型抗生素废水净化菌株的分离筛选及其效果研究J.中国农业大学学报,2008,13(4):97-101.WANGL Q,SUN W,ZHANG G D,et al.Isolation and screening of bacterialstrains during treatment of a typical antibiotic wastewater and study of

45、their effectJ.Journal of China Agricultural University,2008,13(4):97-101.19 ZHANG S,WANG J.Biodegradation of chlortetracycline by Bacilluscereus LZ01:Performance,degradative pathway and possible genes involvedJ.Journal of Hazardous Materials,2022,434:128941.20 YIN Z,XIA D,SHEN M,et al.Tetracycline d

46、egradation by Klebsiellasp.strain TR5:Proposed degradation pathway and possible genes involvedJ.Chemosphere,2020,253:126729.21 LENG Y,BAO J,CHANG G,et al.Biotransformation of tetracyclineby a novel bacterial strain Stenotrophomonas maltophilia DT1J.Journal of Hazardous Materials,2016,318:125-133.22

47、TAN Z,CHEN J,LIU Y,et al.The survival and removal mechanismof Sphingobacterium changzhouense TC931 under tetracycline stressand its ecological safety after applicationJ.Bioresource Technology,2021,333:125067.23 LIU C X,XU Q M,YU S C,et al.Bio-removal of tetracycline antibiotics under the consortium

48、with probiotics Bacillus clausii T and Bacillus amyloliquefaciens producing biosurfactantsJ.Science of the TotalEnvironment,2020,710:136329.24 GHOSH S,SADOWSKY M J,ROBERTS M C,et al.Sphingobacterium sp.strain PM2-P1-29 harbours a functional tet(X)gene encoding for the degradation of tetracyclineJ.Jo

49、urnal of Applied Microbiology,2009,106(4):1336-1342.25 VOLKERS G,SCHULDT L,PALM G J,et al.Crystallization and preliminary X-ray crystallographic analysis of the tetracycline-degrading monooxygenase TetX2 from Bacteroides thetaiotaomicronJ.ActaCrystallographica Section F:Structural Biology and Crysta

50、llizationCommunications,2010,66(5):611-614.26 SHAO S,HU Y,CHENG C,et al.Simultaneous degradation of tetracycline and denitrification by a novel bacterium,Klebsiella sp.SQY5J.Chemosphere,2018,209:35-43.27 陶美.四环素降解菌筛选及其降解特性研究D.成都:西南交通大学,2018.TAO M.Screening and degradation characteristics of atetracyc

展开阅读全文
相似文档                                   自信AI助手自信AI助手
猜你喜欢                                   自信AI导航自信AI导航
搜索标签

当前位置:首页 > 品牌综合 > 临存文档

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2024 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服