收藏 分销(赏)

江苏省锡山高级中学2020中考提前自主招生数学模拟试卷(9套)附解析.docx

上传人:人****来 文档编号:4621470 上传时间:2024-10-08 格式:DOCX 页数:232 大小:1.45MB
下载 相关 举报
江苏省锡山高级中学2020中考提前自主招生数学模拟试卷(9套)附解析.docx_第1页
第1页 / 共232页
江苏省锡山高级中学2020中考提前自主招生数学模拟试卷(9套)附解析.docx_第2页
第2页 / 共232页
江苏省锡山高级中学2020中考提前自主招生数学模拟试卷(9套)附解析.docx_第3页
第3页 / 共232页
江苏省锡山高级中学2020中考提前自主招生数学模拟试卷(9套)附解析.docx_第4页
第4页 / 共232页
江苏省锡山高级中学2020中考提前自主招生数学模拟试卷(9套)附解析.docx_第5页
第5页 / 共232页
点击查看更多>>
资源描述

1、中学自主招生数学试卷一、选择题(每小题3分,共24分.在每小题给出的四个选项中,有且只有一项是正确的)1(3分)3的相反数是()A3B3C3D2(3分)下列计算正确的是()A2a+3b5abB6Ca2b2aba2D(2ab2)38a3b63(3分)如图,图1是一个底面为正方形的直棱柱;现将图1切割成图2的几何体,则图2的俯视图是()ABCD4(3分)一组数据1,2,3,3,4,5若添加一个数据3,则下列统计量中,发生变化的是()A平均数B众数C中位数D方差5(3分)如图,AB是O的直径,直线PA与O相切于点A,PO交O于点C,连接BC若P40,则ABC的度数为()A20B25C40D506(3

2、分)如图,直线l1l2l3,直线AC分别交l1,l2,l3于点A,B,C;直线DF分别交l1,l2,l3于点D、E、F,AC与DF相交于点H,且AH2,HB1,BC5,则()AB2CD7(3分)已知实数x、y满足:xy30和2y3+y60则y2的值为()A0BC1D8(3分)如图,直线ykx+b与ymx+n分别交x轴于点A(1,0),B(4,0),则函数y(kx+b)(mx+n)中,当y0时x的取值范围是()Ax2B0x4C1x4Dx1 或 x4二、填空题(本大题共10小题,每小题3分,共30分)9(3分)“五一”小长假期间,扬州市区8家主要封闭式景区共接待游客528600人次,同比增长20.

3、56%用科学记数法表示528600为 10(3分)若有意义,则x的取值范围是 11(3分)分解因式:mx24m 12(3分)若方程x2+kx+90有两个相等的实数根,则k 13(3分)一个圆锥的母线长为5cm,底面半径为2cm,那么这个圆锥的侧面积为 cm214(3分)如图,点A是反比例函数y的图象上的一点,过点A作ABx轴,垂足为B点C为y轴上的一点,连接AC,BC若ABC的面积为4,则k的值是 15(3分)把一块等腰直角三角尺和直尺如图放置,如果130,则2的度数为 16(3分)如图,在44正方形网格中,黑色部分的图形构成一个轴对称图形,现在任选取一个白色的小正方形并涂黑,使图中黑色部分的

4、图形仍然构成一个轴对称图形的概率是 17(3分)如图,曲线AB是顶点为B,与y轴交于点A的抛物线yx2+4x+2的一部分,曲线BC是双曲线y的一部分,由点C开始不断重复“ABC”的过程,形成一组波浪线,点P(2018,m)与Q(2025,n)均在该波浪线上,则mn 18(3分)如图,O的直径AB8,C为弧AB的中点,P为弧BC上一动点,连接AP、CP,过C作CDCP交AP于点D,连接BD,则BD的最小值是 三、解答题(本大题有10小题,共96分)19(8分)(1)计算:|3|tan30+20180()1;(2)化简:(1+a)(1a)+a(a2)20(8分)央视热播节目“朗读者”激发了学生的阅

5、读兴趣,某校为满足学生的阅读需求,欲购进一批学生喜欢的图书,学校组织学生会成员随机抽取部分学生进行问卷调查,被调查学生须从“文史类、社科类、小说类、生活类”中选择自己喜欢的一类,根据调查结果绘制了统计图(未完成),请根据图中信息,解答下列问题:(1)此次共调查了 名学生;(2)将条形统计图补充完整;(3)图2中“小说类”所在扇形的圆心角为 度;(4)若该校共有学生2000人,估计该校喜欢“社科类”书籍的学生人数21(8分)若关于x的分式方程1的解是正数,求m的取值范围22(8分)小明在上学的路上要经过多个路口,每个路口都设有红、黄、绿三种信号灯,假设在各路口遇到信号灯是相互独立的(1)如果有2

6、个路口,求小明在上学路上到第二个路口时第一次遇到红灯的概率(请用“画树状图”或“列表”等方法写出分析过程)(2)如果有n个路口,则小明在每个路口都没有遇到红灯的概率是 23(10分)如图,在电线杆CD上的C处引拉线CE、CF固定电线杆,拉线CE和地面所成的角CED60,在离电线杆6m的B处安置高为1.5m的测角仪AB,在A处测得电线杆上C处的仰角为30,求拉线CE的长(结果保留根号)24(10分)如图,在平行四边形ABCD中,点E、F分别在AB、CD上,且EDDB,FBBD(1)求证:AEDCFB;(2)若A30,DEB45,求证:DADF25(10分)观察下表:我们把某一格中所有字母相加得到

7、的多项式称为特征多项式,例如:第1格的“特征多项式”为x+4y回答下列问题:(1)第4格的“特征多项式”为 ,第n格的“特征多项式”为 ;(2)若第1格的“特征多项式”的值为2,第2格的“特征多项式”的值为6求x,y的值;在的条件下,第n格的“特征多项式的值”随着n的变化而变化,求“特征多项式的值”的最大值及此时n值26如图,在RtABC中,C90,以AC为直径作O,交AB于D,E为BC的中点,连接DE(1)求证:DE为O的切线;(2)如果O的半径为3,ED4,延长EO交O于F,连接DF,与OA交于点G,求OG的长27(12分)在平面直角坐标系中,点O为原点,点A的坐标为(8,0)如图1,正方

8、形OBCD的顶点B在x轴的负半轴上,点C在第二象限现将正方形OBCD绕点O顺时针旋转角得到正方形OEFG(1)如图2,若45,OEOA,求直线EF的函数表达式;(2)如图3,若为锐角,且tan,当EAx轴时,正方形对角线EG与OF相交于点M,求线段AM的长;(3)当正方形OEFG的顶点F落在y轴正半轴上时,直线AE与直线FG相交于点P,是否存在OEP的两边之比为:1?若存在,求出点P的坐标;若不存在,试说明理由28如图,已知抛物线yax22ax9a与坐标轴交于A,B,C三点,其中C(0,3),BAC的平分线AE交y轴于点D,交BC于点E,过点D的直线l与射线AC,AB分别交于点M,N(1)直接

9、写出a的值、点A的坐标及抛物线的对称轴;(2)点P为抛物线的对称轴上一动点,若PAD为等腰三角形,求出点P的坐标;(3)证明:当直线l绕点D旋转时,+均为定值,并求出该定值参考答案与试题解析一、选择题(每小题3分,共24分.在每小题给出的四个选项中,有且只有一项是正确的)1【分析】根据相反数的概念解答即可【解答】解:3的相反数是(3)3故选:A2【分析】直接利用合并同类项法则以及算术平方根、整式的除法运算法则、积的乘方运算法则分别化简得出答案【解答】解:A、2a+3b无法计算,故此选项错误;B、6,故此选项错误;C、a2b2aba,故此选项错误;D、(2ab2)38a3b6,正确故选:D3【分

10、析】俯视图是从物体上面看到的图形,应把所看到的所有棱都表示在所得图形中【解答】解:从上面看,图2的俯视图是正方形,有一条对角线故选:C4【分析】依据平均数、中位数、众数、方差的定义和公式求解即可【解答】解:A、原来数据的平均数是3,添加数字3后平均数仍为3,故A与要求不符;B、原来数据的众数是3,添加数字3后众数仍为3,故B与要求不符;C、原来数据的中位数是3,添加数字3后中位数仍为3,故C与要求不符;D、原来数据的方差,添加数字3后的方差,故方差发生了变化故选:D5【分析】利用切线的性质和直角三角形的两个锐角互余的性质得到圆心角PAO的度数,然后利用圆周角定理来求ABC的度数【解答】解:如图

11、,AB是O的直径,直线PA与O相切于点A,PAO90又P40,POA50,ABCPOA25故选:B6【分析】求出AB3,由平行线分线段成比例定理得出比例式,即可得出结果【解答】解:AH2,HB1,ABAH+BH3,l1l2l3,故选:A7【分析】根据xy30和2y3+y60,可以得到x与y的关系和y2的值,从而可以求得所求式子的值【解答】解:xy30和2y3+y60,xy+3,y2+0,y2y21+1()1+,故选:D8【分析】看两函数交点坐标之间的图象所对应的自变量的取值即可【解答】解:y3(kx+b)(mx+n),y0,(kx+b)(mx+n)0,y1kx+b,y2mx+n,即y1y20,

12、有以下两种情况:(1)当y10,y20时,此时,x1;(2)当y10,y20时,此时,x4,故选:D二、填空题(本大题共10小题,每小题3分,共30分)9【分析】科学记数法的表示形式为a10n的形式,其中1|a|10,n为整数确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同当原数绝对值1时,n是正数;当原数的绝对值1时,n是负数【解答】解:5286005.286105,故答案为:5.28610510【分析】分母为零,分式无意义;分母不为零,分式有意义【解答】解:根据题意,得:x20,解得:x2故答案是:x211【分析】首先提取公因式m,进而利用平方差公式分

13、解因式即可【解答】解:mx24mm(x24)m(x+2)(x2)故答案为:m(x+2)(x2)12【分析】根据根判别式b24ac的意义得到0,即k24190,然后解方程即可【解答】解:方程x2+kx+90有两个相等的实数根,0,即k24190,解得k6故答案为613【分析】根据圆锥的侧面展开图为扇形,先计算出圆锥的底面圆的周长,然后利用扇形的面积公式求解【解答】解:圆锥的底面半径为5cm,圆锥的底面圆的周长2510,圆锥的侧面积10210(cm2)故答案为:1014【分析】连结OA,如图,利用三角形面积公式得到SOABSABC4,再根据反比例函数的比例系数k的几何意义得到|k|4,然后去绝对值

14、即可得到满足条件的k的值【解答】解:连结OA,如图,ABx轴,OCAB,SOABSABC4,而SOAB|k|,|k|4,k0,k8故答案为:815【分析】根据平行线的性质可得出34+5,结合对顶角相等可得出31+2,代入130、345,即可求出2的度数【解答】解:给各角标上序号,如图所示34+5,14,25,31+2又130,345,215故答案为:1516【分析】由在44正方形网格中,任选取一个白色的小正方形并涂黑,共有13种等可能的结果,使图中黑色部分的图形构成一个轴对称图形的有5种情况,直接利用概率公式求解即可求得答案【解答】解:如图,根据轴对称图形的概念,轴对称图形两部分沿对称轴折叠后

15、可重合,白色的小正方形有13个,而能构成一个轴对称图形的有5个情况,使图中黑色部诶的图形仍然构成一个轴对称图形的概率是:故答案为:17【分析】依据题意可得,A,C之间的水平距离为6,点Q与点P的水平距离为7,A,B之间的水平距离为2,双曲线解析式为y,依据点P、点B离x轴的距离相同,都为6,即点P的纵坐标m6,点Q“、点Q离x轴的距离相同,都为4,即点Q的纵坐标n4,即可得到mn的值【解答】解:由图可得,A,C之间的水平距离为6,201863362,由抛物线yx2+4x+2可得,顶点B(2,6),即A,B之间的水平距离为2,点P、点B离x轴的距离相同,都为6,即点P的纵坐标m6,由抛物线解析式

16、可得AO2,即点C的纵坐标为2,C(6,2),k2612,双曲线解析式为y,202520187,故点Q与点P的水平距离为7,点P、Q“之间的水平距离(2+7)(2+6)1,点Q“的横坐标2+13,在y中,令x3,则y4,点Q“、点Q离x轴的距离相同,都为4,即点Q的纵坐标n4,mn6424,故答案为:2418【分析】以AC为斜边作等腰直角三角形ACQ,则AQC90,依据ADC135,可得点D的运动轨迹为以Q为圆心,AQ为半径的 ,依据ACQ中,AQ4,【解答】解:如图所示,以AC为斜边作等腰直角三角形ACQ,则AQC90,连接AC,BC,BQO的直径为AB,C为的中点,APC45,又CDCP,

17、DCP90,PDC45,ADC135,点D的运动轨迹为以Q为圆心,AQ为半径的,又AB8,C为的中点,ACB是等腰直角三角形,AC4,ACQ中,AQ4,BQ4,BDBQDQ,BD的最小值为44故答案为:44三、解答题(本大题有10小题,共96分)19【分析】(1)根据实数的混合计算解答即可;(2)根据整式的混合计算解答即可【解答】解:(1)原式1(2)原式1a2+a22a12a20【分析】(1)根据文史类的人数以及文史类所占的百分比即可求出总人数;(2)根据总人数以及生活类的百分比即可求出生活类的人数以及小说类的人数;(3)根据小说类的百分比即可求出圆心角的度数;(4)利用样本中喜欢社科类书籍

18、的百分比来估计总体中的百分比,从而求出喜欢社科类书籍的学生人数;【解答】解:(1)喜欢文史类的人数为76人,占总人数的38%,此次调查的总人数为:7638%200人,故答案为:200;(2)喜欢生活类书籍的人数占总人数的15%,喜欢生活类书籍的人数为:20015%30人,喜欢小说类书籍的人数为:20024763070人,如图所示:(3)喜欢社科类书籍的人数为:24人,喜欢社科类书籍的人数占了总人数的百分比为:100%12%,喜欢小说类书籍的人数占了总分数的百分比为:100%15%38%12%35%,小说类所在圆心角为:36035%126;(4)由样本数据可知喜欢“社科类”书籍的学生人数占了总人

19、数的12%,该校共有学生2000人,估计该校喜欢“社科类”书籍的学生人数:200012%240人21【分析】分式方程去分母转化为整式方程,表示出整式方程的解,由分式方程的解为正数确定出m的范围即可【解答】解:去分母得:1+mx2,解得:xm+3,由分式方程的解为正数,得到m+30,且m+32,解得:m3且m122【分析】(1)画树状图列出所有等可能结果,从中找到到第二个路口时第一次遇到红灯的结果数,根据概率公式计算可得(2)根据在第1个路口没有遇到红灯的概率为,到第2个路口还没有遇到红灯的概率为()2可得答案【解答】解:(1)画树状图如下:由树状图知,共有9种等可能结果,其中到第二个路口时第一

20、次遇到红灯的结果数为2,所以到第二个路口时第一次遇到红灯的概率为;(2)在第1个路口没有遇到红灯的概率为,到第2个路口还没有遇到红灯的概率为()2,到第n个路口都没有遇到红灯的概率为()n,故答案为:()n23【分析】由题意可先过点A作AHCD于H在RtACH中,可求出CH,进而CDCH+HDCH+AB,再在RtCED中,求出CE的长【解答】解:过点A作AHCD,垂足为H,由题意可知四边形ABDH为矩形,CAH30,ABDH1.5,BDAH6,在RtACH中,tanCAH,CHAHtanCAH,CHAHtanCAH6tan3062(米),DH1.5,CD2 +1.5,在RtCDE中,CED60

21、,sinCED,CE(4+)(米),答:拉线CE的长约为(4+)米24【分析】(1)由四边形ABCD为平行四边形,利用平行四边形的性质得到对边平行且相等,对角相等,再由垂直的定义得到一对直角相等,利用等式的性质得到一对角相等,利用ASA即可得证;(2)过D作DH垂直于AB,在直角三角形ADH中,利用30度所对的直角边等于斜边的一半得到AD2DH,在直角三角形DEB中,利用斜边上的中线等于斜边的一半得到EB2DH,易得四边形EBFD为平行四边形,利用平行四边形的对边相等得到EBDF,等量代换即可得证【解答】证明:(1)四边形ABCD是平行四边形,ADCB,AC,ADCB,ABCD,ADBCBD,

22、EDDB,FBBD,EDBFBD90,ADECBF,在AED和CFB中,AEDCFB(ASA);(2)作DHAB,垂足为H,在RtADH中,A30,AD2DH,在RtDEB中,DEB45,EB2DH,EDDB,FBBDDEBF,ABCD,四边形EBFD为平行四边形,FDEB,DADF25【分析】(1)利用已知表格中x,y个数变化规律得出第2格的“特征多项式”以及第n格的“特征多项式”;(2)利用(1)中所求得出关于x,y的等式组成方程组求出答案;利用二次函数最值求法得出答案【解答】解:(1)由表格中数据可得:第4格的“特征多项式”为:16x+25y,第n格的“特征多项式”为:n2x+(n+1)

23、2y (n为正整数);故答案为:16x+25y,n2x+(n+1)2y (n为正整数);(2)由题意可得:, 解得:答:x的值为6,y的值为2设Wn2x+(n+1)2y当x6,y2时:W6n2+2(n+1)2,此函数开口向下,对称轴为,当时,W随n的增大而减小, 又n为正整数当n1时,W有最大值,W最大4(1)2+32,即:第1格的特征多项式的值有最大值,最大值为226【分析】(1)首先连接OD,由BEEC,COOA,得出OEAB,根据平行线与等腰三角形的性质,易证得COEDOE,即可得ODEOCE90,则可证得ED为O的切线;(2)只要证明OEAB,推出,由此构建方程即可解决问题;【解答】解

24、:(1)证明:连接OD,E为BC的中点,AC为直径,BEEC,COOA,OEAB,COECAD,EODODA,OAOD,OADODA,COEDOE,在COE和DOE中,COEDOE(SAS),ODEOCE90,EDOD,ED是圆O的切线;(2)连接CD;由题意EC、ED是O的切线,ECED,OCOD,OECD,AC是直径,CDA90,CDAB,OEAB,在RtECO中,EO5,EOCCAD,cosCADcosEOC,AD,设OGx,则有,x,OG27【分析】(1)求出E、F两点坐标,利用待定系数法即可解决问题;(2)如图3中,作MHOA于H,MKAE交AE的延长线于K只要证明四边形AOMK是正

25、方形,证明AE+OA2AH即可解决问题;(3)如图2中,设F(0,2a),则E(a,a)构建一次函数利用方程组求出交点P坐标,分三种情形讨论求解即可;【解答】解:(1)OEOA8,45,E(4,4),F(0,8),设直线EF的解析式为ykx+b,则有,解得直线EF的解析式为yx+8(2)如图3中,作MHOA于H,MKAE交AE的延长线于K在RtAEO中,tanAOE,OA8,AE4,四边形EOGF是正方形,EMO90,EAOEMO90,E、A、O、M四点共圆,EAMEOM45,MAKMAH45,MKAE,MHOA,MKMH,四边形KAOM是正方形,EMOM,MKEMHO,EKOH,AK+AH2

26、AHAE+EK+OAOH12,AH6,AMAH6(3)如图2中,设F(0,2a),则E(a,a)A(8,0),E(a,a),直线AP的解析式为yx+,直线FG的解析式为yx+2a,由,解得,P(,)当POOE时,PO22OE2,则有:+4a2,解得a4或4(舍弃)或0(舍弃),此时P(0,8)当POPE时,则有:+2(+a)2+(a)2,解得:a4或12,此时P(0,8)或(24,48),当PEEO时,(+a)2+(a)24a2,解得a8或0(舍弃),P(8,24)综上所述,满足条件的点P的坐标为(0,8),(8,24),(24,48)28【分析】(1)由点C的坐标为(0,3),可知9a3,故

27、此可求得a的值,然后令y0得到关于x的方程,解关于x的方程可得到点A和点B的坐标,最后利用抛物线的对称性可确定出抛物线的对称轴;(2)利用特殊锐角三角函数值可求得CAO60,依据AE为BAC的角平分线可求得DAO30,然后利用特殊锐角三角函数值可求得OD1,则可得到点D的坐标设点P的坐标为(,a)依据两点的距离公式可求得AD、AP、DP的长,然后分为ADPA、ADDP、APDP三种情况列方程求解即可;(3)设直线MN的解析式为ykx+1,接下来求得点M和点N的横坐标,于是可得到AN的长,然后利用特殊锐角三角函数值可求得AM的长,最后将AM和AN的长代入化简即可【解答】解:(1)C(0,3)9a

28、3,解得:a令y0得:ax22 ax9a0,a0,x22 x90,解得:x或x3点A的坐标为(,0),B(3,0)抛物线的对称轴为x(2)OA,OC3,tanCAO,CAO60AE为BAC的平分线,DAO30DOAO1点D的坐标为(0,1)设点P的坐标为(,a)依据两点间的距离公式可知:AD24,AP212+a2,DP23+(a1)2当ADPA时,412+a2,方程无解当ADDP时,43+(a1)2,解得a0或a2(舍去),点P的坐标为(,0)当APDP时,12+a23+(a1)2,解得a4点P的坐标为(,4)综上所述,点P的坐标为(,0)或(,4)(3)设直线AC的解析式为ymx+3,将点A

29、的坐标代入得:m+30,解得:m,直线AC的解析式为yx+3设直线MN的解析式为ykx+1把y0代入ykx+1得:kx+10,解得:x,点N的坐标为(,0)AN+将yx+3与ykx+1联立解得:x点M的横坐标为过点M作MGx轴,垂足为G则AG+MAG60,AGM90,AM2AG+2+中学自主招生数学试卷一、选择题(本大题共10小题,每小题3分,共30分)1(3分)下列图案中,不是中心对称图形的是()ABCD2(3分)初步核算并经国家统计局核定,2017年广东全省实现地区生产总值约90000亿元,比上年增长7.5%将90000亿元用科学记数法表示应为()元A91011B9104C91012D91

30、0103(3分)下列说法正确的是()A2的相反数是2B2的绝对值是2C2的倒数是2D2的平方根是24(3分)下列运算正确的是()Aa2+a3a5B(a2)3a5Ca3a2aD(ab)2a2b25(3分)下列不等式组的解集中,能用如图所示的数轴表示的是()ABCD6(3分)如图,已知矩形纸片的一条边经过一个含30角的直角三角尺的直角顶点,若矩形纸片的一组对边分别与直角三角尺的两边相交,2115,则1的度数是()A75B85C60D657(3分)如图,在O中,OCAB,A20,则1等于()A40B45C50D608(3分)有三张正面分别写有数字1,2,2的卡片,它们背面完全相同,现将这三张卡片背面

31、朝上洗匀后随机抽取一张,以其正面数字作为a的值,然后再从剩余的两张卡片随机抽一张,以其正面的数字作为b的值,则点(a,b)在第二象限的概率为()ABCD9(3分)点A(t,2)在第二象限,OA与x轴所夹的锐角为,tan,则t的值为()AB2C2D310(3分)如图,矩形纸片ABCD中,AB5,BC3,点E在AD上,且AE1,点P是线段AB上一动点,折叠纸片,使点P与点E重合,展开纸片得折痕MN,过点P作PQAB,交MN所在的直线于点Q设xAP,yPQ,则y关于x的函数图象大致为()ABCD二、填空题(本大题共6小题,每小题4分,共24分)11(4分)方程x2x的解是 12(4分)因式分解:3x

32、2+6x+3 13(4分)把抛物线y2x21向上平移一个单位长度后,所得的函数解析式为 14(4分)如图,在平行四边形ABCD中,对角线AC、BD相交于点O,AC14cm,BD8cm,AD6cm,则OBC的周长是 15(4分)在ABC中BC2,AB2,ACb,且关于x的方程x24x+b0有两个相等的实数根,则AC边上的中线长为 16(4分)如图,在平面直角坐标系xOy中,RtOA1C1,RtOA2C2,RtOA3C3,的斜边都在坐标轴上,A1OC1A2OC2A3OC3A4OC430若点A1的坐标为(3,0),OA1OC2,OA2OC3,OA3OC4,则依此规律,的值为 三、解答题(一)(本大题

33、共3小题,每小题6分,共18分)17(6分)计算:|3|+4cos3018(6分)先化简,后求值:(x),其中x219(6分)已知等腰ABC的顶角A36(如图)(1)请用尺规作图法作底角ABC的平分线BD,交AC于点D(保留作图痕迹,不要求写作法);(2)证明:ABCBDC四、解答题(二)(本大题共3小题,每小题7分,共21分)20(7分)在国务院办公厅发布中国足球发展改革总体方案之后,某校为了调查本校学生对足球知识的了解程度,随机抽取了部分学生进行一次问卷调查,并根据调查结果绘制了如图的统计图,请根据图中所给的信息,解答下列问题:(1)本次接受问卷调查的学生总人数是 ;(2)补全折线统计图(

34、3)扇形统计图中,“了解”所对应扇形的圆心角的度数为 ,m的值为 ;(4)若该校共有学生3000名,请根据上述调查结果估算该校学生对足球的了解程度为“不了解”的人数21(7分)某项工程,甲队单独完成所需时间比乙队单独完成所需时间多5个月,并且两队单独完成所需时间的乘积恰好等于两队单独完成所需时间之和的6倍(1)求甲、乙两队单独完成这项工程各需几个月?(2)若甲队每月的施工费为100万元,乙队每月的施工费比甲队多50万元在保证工程质量的前提下,为了缩短工期,拟安排甲、乙两队分工合作完成这项工程在完成这项工程中,甲队施工时间是乙队施工时间的2倍,那么,甲队最多施工几个月才能使工程款不超过1500万

35、元?(甲、乙两队的施工时间按月取整数)22(7分)如图,在正方形ABCD中,边长AB3,点E(与B,C不重合)是BC边上任意一点,把EA绕点E顺时针方向旋转90到EF,连接CF(1)求证:CF是正方形ABCD的外角平分线;(2)当BAE30时,求CF的长五、解答题(三)(本大题共3小题,每小题9分,共27分)23(9分)如图,在平面直角坐标系中,直线AB:ykx+b(b为常数)与反比例函数y(x0)交于点B,与x轴交于点A,与y轴交于点C,且OBAB(1)如图,若点A的坐标为(6,0)时,求点B的坐标及直线AB的解析式;(2)如图,若OBA90,求点A的坐标;(3)在(2)的条件下中,如图,P

36、A1A是等腰直角三角形,点P在反比例函数y(x0)的图象上,斜边A1A都在x轴上,求点A1的坐标24(9分)如图,在菱形ABCD中,A60,以点D为圆心的D与边AB相切于点E(1)求证:BC是D的切线;(2)设D与BD相交于点H,与边CD相交于点F,连接HF,若AB2,求图中阴影部分的面积;(3)假设圆的半径为r,D上一动点M从点F出发,按逆时针方向运动,且FDM90,连接DM,MF,当S四边形DFHM:S四边形ABCD3:4时,求动点M经过的弧长25(9分)如图,已知抛物线yax2+x+c(a0)与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C,点A坐标为(1,0),点C坐标为(0,

37、),点D是点C关于抛物线对称轴的对称点,连接CD,过点D作DHx轴于点H,过点A作AEAC交DH的延长线于点E(1)求a,c的值;(2)求线段DE的长度;(3)如图,试在线段AE上找一点F,在线段DE上找一点P,且点M为直线PF上方抛物线上的一点,求当CPF的周长最小时,MPF面积的最大值是多少?参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分)1(3分)下列图案中,不是中心对称图形的是()ABCD【分析】根据中心对称图形的定义和各图特点即可解答【解答】解:只有选项C连接相应各点后是正三角形,绕中心旋转180度后所得的图形与原图形不会重合故选:C【点评】本题考查中心对称图形

38、的定义:绕对称中心旋转180度后所得的图形与原图形完全重合,和正奇边形有关的一定不是中心对称图形2(3分)初步核算并经国家统计局核定,2017年广东全省实现地区生产总值约90000亿元,比上年增长7.5%将90000亿元用科学记数法表示应为()元A91011B9104C91012D91010【分析】科学记数法的表示形式为a10n的形式,其中1|a|10,n为整数确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同当原数绝对值1时,n是正数;当原数的绝对值1时,n是负数【解答】解:90000亿91012,故选:C【点评】此题考查科学记数法的表示方法科学记数法的表

39、示形式为a10n的形式,其中1|a|10,n为整数,表示时关键要正确确定a的值以及n的值3(3分)下列说法正确的是()A2的相反数是2B2的绝对值是2C2的倒数是2D2的平方根是2【分析】根据有理数的绝对值、平方根、倒数和相反数解答即可【解答】解:A、2的相反数是2,错误;B、2的绝对值是2,正确;C、2的倒数是,错误;D、2的平方根是,错误;故选:B【点评】此题考查了实数的性质,关键是根据有理数的绝对值、平方根、倒数和相反数解答4(3分)下列运算正确的是()Aa2+a3a5B(a2)3a5Ca3a2aD(ab)2a2b2【分析】各项计算得到结果,即可作出判断【解答】解:A、原式不能合并,不符

40、合题意;B、原式a6,不符合题意;C、原式a,符合题意;D、原式a22ab+b2,不符合题意,故选:C【点评】此题考查了同底数幂的除法,合并同类项,幂的乘方与积的乘方,以及完全平方公式,熟练掌握公式及法则是解本题的关键5(3分)下列不等式组的解集中,能用如图所示的数轴表示的是()ABCD【分析】先求出每个不等式的解集,再求出不等式组的解集,再根据数轴判断即可【解答】解:由数轴可得:2x1,故选:D【点评】本题考查了解一元一次不等式组和在数轴上表示不等式组的解集,能根据不等式的解集求出不等式组的解集是解此题的关键6(3分)如图,已知矩形纸片的一条边经过一个含30角的直角三角尺的直角顶点,若矩形纸片的一组对边分别与直角三角尺的两边相交,2115,则1的度数是()A75B85C60D65【分析】先根据平行线的性质,得出3的度数,再根据三角形外角性质进行计算即可【解答】解:如图所示,DEBC,23115,又3是ABC的外角,13A1153085,故选:B【点评】本题主要考查了平行线的性质以及三角形外角性质的运用,解题时注意:两直线平行

展开阅读全文
部分上传会员的收益排行 01、路***(¥15400+),02、曲****(¥15300+),
03、wei****016(¥13200+),04、大***流(¥12600+),
05、Fis****915(¥4200+),06、h****i(¥4100+),
07、Q**(¥3400+),08、自******点(¥2400+),
09、h*****x(¥1400+),10、c****e(¥1100+),
11、be*****ha(¥800+),12、13********8(¥800+)。
相似文档                                   自信AI助手自信AI助手
搜索标签

当前位置:首页 > 考试专区 > 中考

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2024 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服