收藏 分销(赏)

人教七年级数学下册期中测试试卷及答案.doc

上传人:丰**** 文档编号:4620949 上传时间:2024-10-08 格式:DOC 页数:21 大小:688.04KB 下载积分:10 金币
下载 相关 举报
人教七年级数学下册期中测试试卷及答案.doc_第1页
第1页 / 共21页
人教七年级数学下册期中测试试卷及答案.doc_第2页
第2页 / 共21页


点击查看更多>>
资源描述
人教七年级数学下册期中测试试卷及答案 一、选择题 1.实数4的算术平方根是() A. B.2 C. D.16 2.下列图形中,能将其中一个图形平移得到另一个图形的是 ( ) A. B. C. D. 3.平面直角坐标系中有一点,则点在( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限 4.下列说法中,真命题的个数为( ) ①两条平行线被第三条直线所截,同位角相等; ②在同一平面内,如果两条直线都与第三条直线垂直,那么这两条直线互相平行; ③过一点有且只有一条直线与这条直线平行; ④点到直线的距离是这一点到直线的垂线段; A.1个 B.2个 C.3个 D.4个 5.如图,直线,点分别在直线上,P为两平行线间一点,那么等于( ) A. B. C. D. 6.下列说法不正确的是(  ) A.的平方根是± B.﹣9是81的平方根 C.0.4的算术平方根是0.2 D.=﹣3 7.如图,在中,交AC于点E,交BC于点F,连接DC,,,则的度数是( ) A.42° B.38° C.40° D.32° 8.如图,长方形的各边分别平行于轴、轴,物体甲和物体乙由点同时出发,沿长方形的边做环绕运动,物体甲按逆时针方向以每秒1个单位长度的速度匀速运动,物体乙按顺时针方向以每秒2个单位长度的速度匀速运动则两个物体运动后的第2021次相遇地点的坐标是( ) A. B. C. D. 二、填空题 9.的平方根是_________ 10.已知点,点关于x轴对称,则的值是____. 11.如图,直线与直线交于点,、是与的角平分线,则______度. 12.如图所示,直线AB,BC,AC两两相交,交点分别为A,B,C,点D在直线AB上,过点D作DE∥BC交直线AC于点E,过点E作EF∥AB交直线BC于点F,若∠ABC=50°,则∠DEF的度数___. 13.如图,将ABC沿着AC边翻折得到AB1C,连接BB1交AC于点E,过点B1作B1DAC交BC延长线于点D,交BA延长线于点F,连接DA,若∠CBE=45°,BD=6cm,则ADB1的面积为_________. 14.对于任意有理数a,b,规定一种新的运算a⊙b=a(a+b)﹣1,例如,2⊙5=2×(2+5)﹣1=13.则(﹣2)⊙6的值为_____ 15.在平面直角坐标系中,若点在第二象限,则的取值范围为_______. 16.如图,在平面直角坐标系中,有若干个整数点(纵横坐标都是整数的点),其顺序按图中“→”方向排列如(1,1),(2,1),(2,2),(1,2),(1,3),(2,3)…根据这个规律探索可得,第2021个点的坐标为_____. 三、解答题 17.(1)-+; (2),求. 18.求下列各式中的x. (1)x2-81=0 (2)(x﹣1)3=8 19.如图,三角形中,点,分别是,上的点,且,. (1)求证:;(完成以下填空) 证明:(已知) (______________), 又(已知) (等量代换), (_______________). (2)与的平分线交于点,交于点, ①若,,则_______; ②已知,求.(用含的式子表示) 20.三角形ABC在平面直角坐标系中的位置如图所示,点为坐标原点,,,. (1)将向右平移4个单位长度得到,画出平移后的; (2)将向下平移5个单位长度得到,画出平移后的; (3)直接写出三角形的面积为______平方单位.(直接写出结果) 21.(1)如果是的整数部分,是的小数部分,求的平方根. (2)当为何值时,关于的方程的解与方程的解互为相反数. 22.如图,纸上有五个边长为1的小正方形组成的图形纸,我们可以把它剪开拼成一个正方形. (1)拼成的正方形的面积与边长分别是多少? (2)如图所示,以数轴的单位长度的线段为边作一个直角三角形,以数轴的-1点为圆心,直角三角形的最大边为半径画弧,交数轴正半轴于点A,那么点A表示的数是多少?点A表示的数的相反数是多少? (3)你能把十个小正方形组成的图形纸,剪开并拼成正方形吗?若能,请画出示意图,并求它的边长 23.如图①,将一张长方形纸片沿对折,使落在的位置; (1)若的度数为,试求的度数(用含的代数式表示); (2)如图②,再将纸片沿对折,使得落在的位置. ①若,的度数为,试求的度数(用含的代数式表示); ②若,的度数比的度数大,试计算的度数. 【参考答案】 一、选择题 1.B 解析:B 【分析】 根据算术平方根的定义,求一个非负数a的算术平方根,也就是求一个非负数x,使得x2=a,则x就是a的算术平方根,特别地,规定0的算术平方根是0. 【详解】 解:∵22=4, ∴4的算术平方根是2. 故选B. 【点睛】 本题主要考查了算术平方根的定义,解题的关键在于能够掌握一个非负数的算术平方根具有非负性. 2.A 【分析】 根据平移的性质,结合图形对选项进行一一分析,选出正确答案. 【详解】 解:A、图形的形状和大小没有变化,符合平移的性质,属于平移得到; B、图形由轴对称得到,不属于平移得到,不属于平移 解析:A 【分析】 根据平移的性质,结合图形对选项进行一一分析,选出正确答案. 【详解】 解:A、图形的形状和大小没有变化,符合平移的性质,属于平移得到; B、图形由轴对称得到,不属于平移得到,不属于平移得到; C、图形由旋转变换得到,不符合平移的性质,不属于平移得到; D、图形的大小发生变化,不属于平移得到; 故选:A. 【点睛】 本题考查平移的基本性质,平移不改变图形的形状、大小和方向.掌握平移的性质是解题的关键. 3.D 【分析】 根据平面直角坐标系内各象限内点的坐标符号特征判定即可. 【详解】 解:根据平面直角坐标系内各象限内点的坐标符号特征可知: 在第四象限 故选D. 【点睛】 本题考查了各象限内点的坐标的符号特征,第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).记住各象限内点的坐标的符号是解决的关键. 4.B 【分析】 根据平行线的性质与判定,点到直线的距离的定义逐项分析判断即可 【详解】 ①两条平行线被第三条直线所截,同位角相等,故①是真命题; ②在同一平面内,如果两条直线都与第三条直线垂直,那么这两条直线互相平行,故②是真命题; ③在同一平面内,过直线外一点有且只有一条直线与这条直线平行,故③不是真命题, ④点到直线的距离是这一点到直线的垂线段的长度,故④不是真命题, 故真命题是①②, 故选B 【点睛】 本题考查了判断真假命题,平行线的性质与判定,点到直线的距离的定义,掌握相关性质定理是解题的关键. 5.A 【分析】 过点P作PE∥a.则可得出PE∥a∥b,结合“两直线平行,内错角相等”可得出∠2=∠AMP+∠BNP,再结合邻补角的即可得出结论. 【详解】 解:过点P作PE∥a,如图所示. ∵PE∥a,a∥b, ∴PE∥a∥b, ∴∠AMP=∠MPE,∠BNP=∠NPE, ∴∠2=∠MPE+∠NPE=∠AMP+∠BNP. ∵∠1+∠AMP=180°,∠3+∠BNP=180°, ∴∠1+∠2+∠3=180°+180°=360°. 故选:A. 【点睛】 本题考查了平行线的性质以及角的计算,解题的关键是找出∠2=∠AMP+∠BNP.本题属于基础题,难度不大,解决该题型题目时,根据平行线的性质得出相等(或互补)的角是关键. 6.C 【分析】 根据立方根与平方根的定义即可求出答案. 【详解】 解:0.4的算术平方根为 ,故C错误, 故选C. 【点睛】 考查平方根与立方根,解题的关键是正确理解概念,本题属于基础题型. 7.D 【分析】 由可得到与的关系,利用三角形的外角与内角的关系可得结论. 【详解】 解:,, . ,, . 故选:. 【点睛】 本题考查了平行线的性质与三角形的外角性质,掌握“三角形的外角等于与它不相邻的两个内角和”是解决本题的关键. 8.A 【分析】 根据两个物体运动速度和矩形周长,得到两个物体的相遇时间间隔,进而得到两个点相遇的位置规律. 【详解】 解:由已知,矩形周长为12, ∵甲、乙速度分别为1单位/秒,2单位/秒 则两个物体 解析:A 【分析】 根据两个物体运动速度和矩形周长,得到两个物体的相遇时间间隔,进而得到两个点相遇的位置规律. 【详解】 解:由已知,矩形周长为12, ∵甲、乙速度分别为1单位/秒,2单位/秒 则两个物体每次相遇时间间隔为秒, 则两个物体相遇点依次为(-1,1)、(-1,-1)、(2,0), ∵2021=3×673+2, ∴第2021次两个物体相遇位置为(-1,-1), 故选:A. 【点睛】 本题为平面直角坐标系内的动点坐标规律探究题,解答关键是找到两个物体相遇的位置的变化规律. 二、填空题 9.. 【详解】 【分析】先确定,再根据平方根定义可得的平方根是±. 【详解】因为,6的平方根是±,所以的平方根是±. 故正确答案为±. 【点睛】此题考核算术平方根和平方根定义.此题关键要看清符号所表示 解析:. 【详解】 【分析】先确定,再根据平方根定义可得的平方根是±. 【详解】因为,6的平方根是±,所以的平方根是±. 故正确答案为±. 【点睛】此题考核算术平方根和平方根定义.此题关键要看清符号所表示的意义. 10.-6 【分析】 让两点的横坐标相等,纵坐标相加得0,即可得关于x,y的二元一次方程组,解值即可. 【详解】 解:∵点,点关于x轴对称, ∴; 解得:, ∴, 故答案为-6. 【点睛】 本题考查平面直 解析:-6 【分析】 让两点的横坐标相等,纵坐标相加得0,即可得关于x,y的二元一次方程组,解值即可. 【详解】 解:∵点,点关于x轴对称, ∴; 解得:, ∴, 故答案为-6. 【点睛】 本题考查平面直角坐标系中关于坐标轴成轴对称的两点的坐标之间的关系:关于横轴的对称点,横坐标不变,纵坐标变成相反数. 11.60 【分析】 由角平分线的定义可求出∠AOE=∠EOC=∠COB=60°,再根据对顶角相等即可求出∠AOD的度数. 【详解】 ∵OE平分∠AOC, ∴∠AOE=∠EOC, ∵OC平分∠BOE, ∴ 解析:60 【分析】 由角平分线的定义可求出∠AOE=∠EOC=∠COB=60°,再根据对顶角相等即可求出∠AOD的度数. 【详解】 ∵OE平分∠AOC, ∴∠AOE=∠EOC, ∵OC平分∠BOE, ∴∠EOC=∠COB ∴∠AOE=∠EOC=∠COB, ∵∠AOE+∠EOC+∠COB=180︒ ∴∠COB=60°, ∴∠AOD=∠COB=60°, 故答案为:60 【点睛】 本题主要考查了角平分线的应用以及对顶角相等的性质,熟练运用角平分线的定义是解题的关键. 12.130°. 【分析】 先求出∠ABC=∠ADE=50°,再求出∠DEF=180°﹣50°=130°即可. 【详解】 解:∵DE∥BC, ∴∠ABC=∠ADE=50°(两直线平行,同位角相等), ∵E 解析:130°. 【分析】 先求出∠ABC=∠ADE=50°,再求出∠DEF=180°﹣50°=130°即可. 【详解】 解:∵DE∥BC, ∴∠ABC=∠ADE=50°(两直线平行,同位角相等), ∵EF∥AB, ∴∠ADE+∠DEF=180°(两直线平行,同旁内角互补), ∴∠DEF=180°﹣50°=130°. 故答案为:130°. 【点睛】 本题考查了平行线线段的性质,熟练掌握平行线的性质定理是解题关键. 13.cm² 【分析】 根据翻折变换的性质可知AC垂直平分BB1,且B1D平行AC,得到AC为三角形ADB中位线,从而求解. 【详解】 解:根据翻折变换的性质可知AC垂直平分BB1, ∵B1D∥AC, ∴ 解析:cm² 【分析】 根据翻折变换的性质可知AC垂直平分BB1,且B1D平行AC,得到AC为三角形ADB中位线,从而求解. 【详解】 解:根据翻折变换的性质可知AC垂直平分BB1, ∵B1D∥AC, ∴AC为三角形ADB中位线, ∴BC=CD=BD=3cm, 在Rt△BCE中,∠CBE=45°,BC=3cm, ∴CE2+BE2=BC2, 解得BE=CE=cm. ∴EB1=BE=, ∵CE为△BDB1中位线, ∴DB1=2CE=3cm, △ADB1的高与EB1相等, ∴S△ADB1=×DB1×EB1=××3=cm², 故答案为:cm². 【点睛】 本题主要考查了翻折变换的性质、三角形面积的求法,解题关键是能够明确AC为△ADB的中位线从而得出答案. 14.-9 【分析】 直接利用已知运算法则计算得出答案. 【详解】 (﹣2)⊙6 =﹣2×(﹣2+6)﹣1 =﹣2×4﹣1 =﹣8﹣1 =﹣9. 故答案为﹣9. 【点睛】 此题考察新定义形式的有理数计算, 解析:-9 【分析】 直接利用已知运算法则计算得出答案. 【详解】 (﹣2)⊙6 =﹣2×(﹣2+6)﹣1 =﹣2×4﹣1 =﹣8﹣1 =﹣9. 故答案为﹣9. 【点睛】 此题考察新定义形式的有理数计算,正确理解题意是解题的关键,依据题意正确列代数式计算即可. 15.-1<a<3 【分析】 根据第二象限内点的横坐标是负数,纵坐标是正数列出不等式组,然后求解即可. 【详解】 解:∵点P(a-3,a+1)在第二象限, ∴, 解不等式①得,a<3, 解不等式②得,a> 解析:-1<a<3 【分析】 根据第二象限内点的横坐标是负数,纵坐标是正数列出不等式组,然后求解即可. 【详解】 解:∵点P(a-3,a+1)在第二象限, ∴, 解不等式①得,a<3, 解不等式②得,a>-1, ∴-1<a<3. 故答案为:-1<a<3. 【点睛】 本题考查了各象限内点的坐标的符号特征以及解不等式组,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-). 16.(45,5) 【分析】 观察图形可知,以最外边的矩形边长上的点为准,点的总个数等于正方形直线上,最右边的点的横坐标的平方,并且点的横坐标是奇数时,最后以横坐标为该数,纵坐标为1结束,当右下角的点横坐 解析:(45,5) 【分析】 观察图形可知,以最外边的矩形边长上的点为准,点的总个数等于正方形直线上,最右边的点的横坐标的平方,并且点的横坐标是奇数时,最后以横坐标为该数,纵坐标为1结束,当右下角的点横坐标是偶数时,以偶数为横坐标,纵坐标为右下角横坐标的偶数的点结束,根据此规律解答即可. 【详解】 解:根据图形,以最外边的矩形边长上的点为准,点的总个数等于直线上最右边的点的横坐标的平方, 例如:右下角的点的横坐标为1,共有1个,, 右下角的点的横坐标为2时,如下图点,共有4个,, 右下角的点的横坐标为3时,共有9个,, 右下角的点的横坐标为4时,如下图点,共有16个,, 右下角的点的横坐标为时,共有个, ,45是奇数, 第2025个点是, , 点是向上平移4个单位, 第2021个点是. 故答案为:. 【点睛】 本题考查了点的坐标的规律变化,观察出点的个数按照平方数的规律变化是解题的关键. 三、解答题 17.(1) - (2)±3 【详解】 试题分析:(1)先化简根式,再加减;(2)称项后,直接开平方即可; 试题解析: (1)原式= ; (2)x2-4=5 x2=9 x=3或x=-3 解析:(1) - (2)±3 【详解】 试题分析:(1)先化简根式,再加减;(2)称项后,直接开平方即可; 试题解析: (1)原式= ; (2)x2-4=5 x2=9 x=3或x=-3 18.(1)x=±9;(2)x=3 【分析】 (1)方程整理后,利用平方根定义开方即可求出解; (2)利用立方根定义开立方即可求出解. 【详解】 解:(1)方程整理得:x2=81, 开方得:x=±9; ( 解析:(1)x=±9;(2)x=3 【分析】 (1)方程整理后,利用平方根定义开方即可求出解; (2)利用立方根定义开立方即可求出解. 【详解】 解:(1)方程整理得:x2=81, 开方得:x=±9; (2)方程整理得:(x-1)3=8, 开立方得:x-1=2, 解得:x=3. 【点睛】 本题考查了平方根、立方根,熟练掌握各自的定义是解本题的关键. 19.(1)两直线平行,同位角相等;同位角相等,两直线平行;(2)①;② 【分析】 (1)根据平行线的判定及性质即可证明; (2)①由已知得,,由(1)知,可得,在中,,由对顶角得,由三角形内角和定理即可 解析:(1)两直线平行,同位角相等;同位角相等,两直线平行;(2)①;② 【分析】 (1)根据平行线的判定及性质即可证明; (2)①由已知得,,由(1)知,可得,在中,,由对顶角得,由三角形内角和定理即可计算出; ②根据条件,可得,由,得出,通过等量代换得,由三角形内角和定理即可求出. 【详解】 解:证明(1)证; 证明:(已知), (两直线平行,同位角相等), 又(已知) (等量代换), (同位角相等,两直线平行), 故答案是:两直线平行,同位角相等;同位角相等,两直线平行. (2)①与的平分线交于点,交于点, 且,, , , 由(1)知, , 在中, , , , 故答案是:; ②, , 由(1)知, , , 在中, , 故答案是:. 【点睛】 本题考查了平行线的判定及性质、角平分线的定义、三角形内角和定理、对顶角,解题的关键是掌握相关定理找到角之间的等量关系,再通过等量代换的思想进行求解. 20.(1)见解析;(2)见解析;(3) 【分析】 (1)把三角形的各顶点向右平移4个单位长度,得到、、的对应点、、,再顺次连接即可得到三角形; (2)把三角形的各顶点向下平移5个单位长度,得到、、的对应 解析:(1)见解析;(2)见解析;(3) 【分析】 (1)把三角形的各顶点向右平移4个单位长度,得到、、的对应点、、,再顺次连接即可得到三角形; (2)把三角形的各顶点向下平移5个单位长度,得到、、的对应点、、,再顺次连接即可得到三角形; (3)三角形的面积等于边长为2的正方形的面积减去2个直角边长为2,1的直角三角形的面积和一个两直角边长为1,1的直角三角形的面积. 【详解】 解:(1)平移后的三角形如下图所示; (2)平移后的三角形如下图所示; (3)三角形的面积为边长为2的正方形的面积减去2个直角边长为2,1的直角三角形的面积和一个两直角边长为1,1的直角三角形的面积, ∴S△ABC . 【点睛】 本题考查了作图平移变换,解题的关键是要掌握图形的平移要归结为图形顶点的平移;格点中的三角形的面积通常整理为长方形的面积与几个三角形的面积的差. 21.(1)±3;(2)m=-4 【分析】 (1)估算,得到的范围,从而确定x、y的值,再代入计算即可. (2)首先解得第二个方程的解,然后根据相反数的定义得到第一个方程的解,再代入求出m的值即可. 【详 解析:(1)±3;(2)m=-4 【分析】 (1)估算,得到的范围,从而确定x、y的值,再代入计算即可. (2)首先解得第二个方程的解,然后根据相反数的定义得到第一个方程的解,再代入求出m的值即可. 【详解】 解:(1)∵, ∴, ∴, ∴x=6,y=, ∴=9, ∴的的平方根为±3; (2), 解得:x=-9, ∴的解为x=9,代入, 得, 解得:m=-4. 【点睛】 本题考查了一元一次方程的解,无理数的估算、平方根的意义,以及解一元一次方程,解题的关键是得到方程的解. 22.(1)5;;(2);;(3)能,. 【分析】 (1)易得5个小正方形的面积的和,那么就得到了大正方形的面积,求得面积的算术平方根即可为大正方形的边长. (2)求出斜边长即可. (3)一共有10个小正 解析:(1)5;;(2);;(3)能,. 【分析】 (1)易得5个小正方形的面积的和,那么就得到了大正方形的面积,求得面积的算术平方根即可为大正方形的边长. (2)求出斜边长即可. (3)一共有10个小正方形,那么组成的大正方形的面积为10,边长为10的算术平方根,画图. 【详解】 试题分析: 解:(1)拼成的正方形的面积与原面积相等1×1×5=5, 边长为, 如图(1) (2)斜边长=, 故点A表示的数为:;点A表示的相反数为: (3)能,如图 拼成的正方形的面积与原面积相等1×1×10=10,边长为. 考点:1.作图—应用与设计作图;2.图形的剪拼. 23.(1) ;(2)① ;② 【分析】 (1)由平行线的性质得到,由折叠的性质可知,∠2=∠BFE,再根据平角的定义求解即可; (2) ①由(1)知,,根据平行线的性质得到 ,再由折叠的性质及平角的定义 解析:(1) ;(2)① ;② 【分析】 (1)由平行线的性质得到,由折叠的性质可知,∠2=∠BFE,再根据平角的定义求解即可; (2) ①由(1)知,,根据平行线的性质得到 ,再由折叠的性质及平角的定义求解即可; ②由(1)知,∠BFE = ,由可知:,再根据条件和折叠的性质得到,即可求解. 【详解】 解:(1)如图,由题意可知, ∴, ∵, ∴, , 由折叠可知. (2)①由题(1)可知 , ∵, , 再由折叠可知: , ; ②由可知:, 由(1)知, , 又的度数比的度数大, , , , . 【点睛】 此题考查了平行线的性质,属于综合题,有一定难度,熟记“两直线平行,同位角相等”、“两直线平行,内错角相等”及折叠的性质是解题的关键.
展开阅读全文

开通  VIP会员、SVIP会员  优惠大
下载10份以上建议开通VIP会员
下载20份以上建议开通SVIP会员


开通VIP      成为共赢上传

当前位置:首页 > 教育专区 > 初中数学

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:0574-28810668  投诉电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服