收藏 分销(赏)

高考立体几何文科大题与答案.doc

上传人:丰**** 文档编号:4601374 上传时间:2024-10-04 格式:DOC 页数:27 大小:2.30MB
下载 相关 举报
高考立体几何文科大题与答案.doc_第1页
第1页 / 共27页
高考立体几何文科大题与答案.doc_第2页
第2页 / 共27页
高考立体几何文科大题与答案.doc_第3页
第3页 / 共27页
高考立体几何文科大题与答案.doc_第4页
第4页 / 共27页
高考立体几何文科大题与答案.doc_第5页
第5页 / 共27页
点击查看更多>>
资源描述

1、高考立体几何大题及答案1.(2009全国卷文)如图,四棱锥中,底面为矩形,底面,点在侧棱上,。 (I)证明:是侧棱的中点;求二面角的大小。 2.(2009全国卷文)如图,直三棱柱ABC-A1B1C1中,ABAC,D、E分别为AA1、B1C的中点,DE平面BCC1()证明:AB=AC ()设二面角A-BACBA1B1C1DED-C为60,求B1C与平面BCD所成的角的大小 3.(2009浙江卷文)如图,平面,分别为的中点(I)证明:平面;(II)求与平面所成角的正弦值4.(2009北京卷文)如图,四棱锥的底面是正方形,点E在棱PB上.()求证:平面; ()当且E为PB的中点时,求AE与平面PDB

2、所成的角的大小.5.(2009江苏卷)如图,在直三棱柱中,、分别是、的中点,点在上,。 求证:(1)EF平面ABC; (2)平面平面.6.(2009安徽卷文)如图,ABCD的边长为2的正方形,直线l与平面ABCD平行,g和F式l上的两个不同点,且EA=ED,FB=FC, 和是平面ABCD内的两点,和都与平面ABCD垂直,()证明:直线垂直且平分线段AD:. ()若EAD=EAB=60,EF=2,求多面体ABCDEF的体积。7.(2009江西卷文)如图,在四棱锥中,底面是矩形,平面,以的中点为球心、为直径的球面交于点(1)求证:平面平面;(2)求直线与平面所成的角;(3)求点到平面的距离8.(2

3、009四川卷文)如图,正方形所在平面与平面四边形所在平面互相垂直,是等腰直角三角形,(I)求证:;(II)设线段、的中点分别为、,求证: (III)求二面角的大小。9.(2009湖北卷文)如图,四棱锥SABCD的底面是正方形,SD平面ABCD,SDADa,点E是SD上的点,且DEa(01). ()求证:对任意的(0、1),都有ACBE:()若二面角C-AE-D的大小为600C,求的值。10.(2009湖南卷文)如图3,在正三棱柱中,AB=4, ,点D是BC的中点,点E在AC上,且DEE.()证明:平面平面; ()求直线AD和平面所成角的正弦值。11.(2009辽宁卷文)如图,已知两个正方形AB

4、CD 和DCEF不在同一平面内,M,N分别为AB,DF的中点。(I)若CD2,平面ABCD 平面DCEF,求直线MN的长;(II)用反证法证明:直线ME 与 BN 是两条异面直线。 12.(2009四川卷文)如图,正方形所在平面与平面四边形所在平面互相垂直,是等腰直角三角形,(I)求证:;(II)设线段、的中点分别为、,求证: (III)求二面角的大小。13.(2009陕西卷文)如图,直三棱柱中, AB=1,ABC=60.()证明:;CBAC1B1A1()求二面角AB的大小。 14.(2009宁夏海南卷文)如图,在三棱锥中,是等边三角形,PAC=PBC=90 ()证明:ABPC()若,且平面平

5、面, 求三棱锥体积。15.(2009福建卷文)如图,平行四边形中,将沿折起到的位置,使平面平面 (I)求证: ()求三棱锥的侧面积。16.(2009重庆卷文)如题(18)图,在五面体中,四边形为平行四边形,平面,求:()直线到平面的距离;()二面角的平面角的正切值17.(2009年广东卷文)某高速公路收费站入口处的安全标识墩如图4所示,墩的上半部分是正四棱锥PEFGH,下半部分是长方体ABCDEFGH.图5、图6分别是该标识墩的正(主)视图和俯视图.(1)请画出该安全标识墩的侧(左)视图;(2)求该安全标识墩的体积(3)证明:直线BD平面PEG参考答案1、【解析】(I)解法一:作交于N,作交于

6、E,连ME、NB,则面,,设,则,在中,。在中由解得,从而 M为侧棱的中点M. 解法二:过作的平行线.(II)分析一:利用三垂线定理求解。在新教材中弱化了三垂线定理。这两年高考中求二面角也基本上不用三垂线定理的方法求作二面角。过作交于,作交于,作交于,则,面,面面,面即为所求二面角的补角.法二:利用二面角的定义。在等边三角形中过点作交于点,则点为AM的中点,取SA的中点G,连GF,易证,则即为所求二面角.解法二、分别以DA、DC、DS为x、y、z轴如图建立空间直角坐标系Dxyz,则。SABCDMzxy()设,则,由题得,即解之个方程组得即所以是侧棱的中点。 法2:设,则又故,即,解得,所以是侧

7、棱的中点。()由()得,又,设分别是平面、的法向量,则且,即且分别令得,即, 二面角的大小。2、解法一:()取BC中点F,连接EF,则EF,从而EFDA。连接AF,则ADEF为平行四边形,从而AF/DE。又DE平面,故AF平面,从而AFBC,即AF为BC的垂直平分线,所以AB=AC。()作AGBD,垂足为G,连接CG。由三垂线定理知CGBD,故AGC为二面角A-BD-C的平面角。由题设知,AGC=600. 设AC=2,则AG=。又AB=2,BC=,故AF=。由得2AD=,解得AD=。故AD=AF。又ADAF,所以四边形ADEF为正方形。因为BCAF,BCAD,AFAD=A,故BC平面DEF,因

8、此平面BCD平面DEF。连接AE、DF,设AEDF=H,则EHDF,EH平面BCD。连接CH,则ECH为与平面BCD所成的角。. 因ADEF为正方形,AD=,故EH=1,又EC=2,所以ECH=300,即与平面BCD所成的角为300.解法二:()以A为坐标原点,射线AB为x轴的正半轴,建立如图所示的直角坐标系Axyz。设B(1,0,0),C(0,b,0),D(0,0,c),则(1,0,2c),E(,c).于是=(,0),=(-1,b,0).由DE平面知DEBC, =0,求得b=1,所以 AB=AC。()设平面BCD的法向量则又=(-1,1, 0),=(-1,0,c),故 令x=1, 则y=1,

9、 z=,=(1,1, ).又平面的法向量=(0,1,0)由二面角为60知,=60,故 ,求得 于是 , , 所以与平面所成的角为303、()证明:连接, 在中,分别是的中点,所以, 又,所以,又平面ACD ,DC平面ACD, 所以平面ACD()在中,所以 而DC平面ABC,所以平面ABC 而平面ABE, 所以平面ABE平面ABC, 所以平面ABE由()知四边形DCQP是平行四边形,所以 所以平面ABE, 所以直线AD在平面ABE内的射影是AP, 所以直线AD与平面ABE所成角是 在中, ,所以4、【解法1】()四边形ABCD是正方形,ACBD,PDAC,AC平面PDB,平面.()设ACBD=O

10、,连接OE, 由()知AC平面PDB于O, AEO为AE与平面PDB所的角, O,E分别为DB、PB的中点, OE/PD,又, OE底面ABCD,OEAO, 在RtAOE中, ,即AE与平面PDB所成的角的大小为.【解法2】如图,以D为原点建立空间直角坐标系, 设则,(),ACDP,ACDB,AC平面PDB,平面.()当且E为PB的中点时, 设ACBD=O,连接OE, 由()知AC平面PDB于O, AEO为AE与平面PDB所的角, ,即AE与平面PDB所成的角的大小为.5、6、【解析】(1)由于EA=ED且点E在线段AD的垂直平分线上,同理点F在线段BC的垂直平分线上.又ABCD是四方形线段B

11、C的垂直平分线也就是线段AD的垂直平分线即点EF都居线段AD的垂直平分线上. . 所以,直线EF垂直平分线段AD.(2)连接EB、EC由题意知多面体ABCD可分割成正四棱锥EABCD和正四面体EBCF两部分.设AD中点为M,在RtMEE中,由于ME=1, .ABCD又BCF=VCBEF=VCBEA=VEABC多面体ABCDEF的体积为VEABCDVEBCF=7、解:方法(一):(1)证:依题设,在以为直径的球面上,则.因为平面,则,又,所以平面,则,因此有平面,所以平面平面.()设平面与交于点,因为,所以平面,则,由(1)知,平面,则MN是PN在平面ABM上的射影,所以 就是与平面所成的角,且

12、 所求角为(3)因为O是BD的中点,则O点到平面ABM的距离等于D点到平面ABM距离的一半,由(1)知,平面于M,则|DM|就是D点到平面ABM距离.因为在RtPAD中,所以为中点,则O点到平面ABM的距离等于。方法二:(1)同方法一;(2)如图所示,建立空间直角坐标系,则, ,设平面的一个法向量,由可得:,令,则,即.设所求角为,则,所求角的大小为. (3)设所求距离为,由,得:8、【解析】解法一:因为平面ABEF平面ABCD,BC平面ABCD,BCAB,平面ABEF平面ABCD=AB,所以BC平面ABEF.所以BCEF.因为ABE为等腰直角三角形,AB=AE,所以AEB=45,又因为AEF

13、=45,所以FEB=90,即EFBE.因为BC平面ABCD, BE平面BCE,BCBE=B所以 6分(II)取BE的中点N,连结CN,MN,则MNPC PMNC为平行四边形,所以PMCN. CN在平面BCE内,PM不在平面BCE内, PM平面BCE. 8分(III)由EAAB,平面ABEF平面ABCD,易知EA平面ABCD.作FGAB,交BA的延长线于G,则FGEA.从而FG平面ABCD,作GHBD于H,连结FH,则由三垂线定理知BDFH. FHG为二面角F-BD-A的平面角. FA=FE,AEF=45,AEF=90, FAG=45.设AB=1,则AE=1,AF=,则在RtBGH中, GBH=

14、45,BG=AB+AG=1+=, 在RtFGH中, , 二面角的大小为 12分 解法二: 因等腰直角三角形,所以又因为平面,所以平面,所以即两两垂直;如图建立空间直角坐标系, (I) 设,则,从而 ,于是, , 平面,平面, (II),从而 于是 ,又平面,直线不在平面内, 故平面(III)设平面的一个法向量为,并设( 即 取,则,从而(1,1,3) 取平面D的一个法向量为 故二面角的大小为9、()证发1:连接BD,由底面是正方形可得ACBD。 SD平面,BD是BE在平面ABCD上的射影,由三垂线定理得ACBE.(II)解法1:SD平面ABCD,平面, SDCD. 又底面是正方形, DD,又A

15、D=D,CD平面SAD。过点D在平面SAD内做DFAE于F,连接CF,则CFAE, 故CFD是二面角C-AE-D 的平面角,即CFD=60在RtADE中,AD=, DE= , AE= 。于是,DF=在RtCDF中,由cot60=得, 即=3 , 解得=10、解:()如图所示,由正三棱柱的性质知平面.又DE平面ABC,所以DE.而DEE,,所以DE平面.又DE 平面,故平面平面. ()解法 1: 过点A作AF垂直于点,连接DF.由()知,平面平面,所以AF平面,故是直线AD和平面所成的角。 因为DE,所以DEAC.而ABC是边长为4的正三角形,于是AD=,AE=4-CE=4-=3.又因为,所以E

16、= = 4, , .即直线AD和平面所成角的正弦值为 .解法2 : 如图所示,设O是AC的中点,以O为原点建立空间直角坐标系,则相关各点的坐标分别是A(2,0,0,), (2,0,), D(-1, ,0), E(-1,0,0).易知=(-3,-),=(0,-,0),=(-3,0).设是平面的一个法向量,则解得.故可取.于是 = . 由此即知,直线AD和平面所成角的正弦值为 .11解()取CD的中点G连结MG,NG. 因为ABCD,DCEF为正方形,且边长为2, 所以MGCD,MG2,. 因为平面ABCD平面DCEF, 所以MG平面DCEF,可得MGNG. 所以 6分()假设直线ME与BN共面,

17、 .8分则平面MBEN,且平面MBEN与平面DCEF交于EN,由已知,两正方形不共面,故平面DCEF.又ABCD,所以AB平面DCEF.而EN为平面MBEN与平面DCEF的交线,所以ABEN.又ABCDEF,所以ENEF,这与矛盾,故假设不成立。 所以ME与BN不共面,它们是异面直线。 .12分12、【解析】解法一:因为平面ABEF平面ABCD,BC平面ABCD,BCAB,平面ABEF平面ABCD=AB,所以BC平面ABEF.所以BCEF.因为ABE为等腰直角三角形,AB=AE,所以AEB=45,又因为AEF=45,所以FEB=90,即EFBE.因为BC平面ABCD, BE平面BCE,BCBE

18、=B所以 6分(II)取BE的中点N,连结CN,MN,则MNPC PMNC为平行四边形,所以PMCN. CN在平面BCE内,PM不在平面BCE内, PM平面BCE. 8分(III)由EAAB,平面ABEF平面ABCD,易知EA平面ABCD.作FGAB,交BA的延长线于G,则FGEA.从而FG平面ABCD,作GHBD于H,连结FH,则由三垂线定理知BDFH. FHG为二面角F-BD-A的平面角. FA=FE,AEF=45,AEF=90, FAG=45.设AB=1,则AE=1,AF=,则在RtBGH中, GBH=45,BG=AB+AG=1+=, 在RtFGH中, , 二面角的大小为 12分 解法二

19、: 因等腰直角三角形,所以又因为平面,所以平面,所以即两两垂直;如图建立空间直角坐标系, (I) 设,则,从而 ,于是, , 平面,平面, (II),从而 于是 ,又平面,直线不在平面内, 故平面(III)设平面的一个法向量为,并设( 即 取,则,从而(1,1,3) 取平面D的一个法向量为 故二面角的大小为13、解析:解答1()因为三棱柱为直三棱柱所以在中由正弦定理得所以即,所以又因为所以()如图所示,作交于,连,由三垂线定理可得所以为所求角,在中,在中, ,所以所以所成角是14、解:()因为是等边三角形,,所以,可得。如图,取中点,连结,则,所以平面,所以。 6分 ()作,垂足为,连结因为,

20、所以,由已知,平面平面,故8分因为,所以都是等腰直角三角形。由已知,得, 的面积因为平面,所以三角锥的体积 12分15、(I)证明:在中, 又平面平面 平面平面平面 平面 平面()解:由(I)知从而 在中, 又平面平面 平面平面,平面 而平面 综上,三棱锥的侧面积,16、解法一:()平面, AB到面的距离等于点A到面的距离,过点A作于G,因,故;又平面,由三垂线定理可知,故,知,所以AG为所求直线AB到面的距离。在中,由平面,得AD,从而在中,。即直线到平面的距离为。()由己知,平面,得AD,又由,知,故平面ABFE,所以,为二面角的平面角,记为.在中, ,由得,从而在中, ,故所以二面角的平

21、面角的正切值为.解法二: ()如图以A点为坐标原点,的方向为的正方向建立空间直角坐标系数,则A(0,0,0) C(2,2,0) D(0,2,0) 设可得,由.即,解得 ,面,所以直线AB到面的距离等于点A到面的距离。设A点在平面上的射影点为,则 因且,而,此即 解得,知G点在面上,故G点在FD上.,故有 联立,解得, . 为直线AB到面的距离. 而 所以()因四边形为平行四边形,则可设, .由得,解得.即.故由,因,故为二面角的平面角,又,所以 17、【解析】(1)侧视图同正视图,如下图所示.()该安全标识墩的体积为:()如图,连结EG,HF及 BD,EG与HF相交于O,连结PO. 由正四棱锥的性质可知,平面EFGH , 又 平面PEG 又 平面PEG;. 单纯的课本内容,并不能满足学生的需要,通过补充,达到内容的完善 教育之通病是教用脑的人不用手,不教用手的人用脑,所以一无所能。教育革命的对策是手脑联盟,结果是手与脑的力量都可以大到不可思议。.

展开阅读全文
部分上传会员的收益排行 01、路***(¥15400+),02、曲****(¥15300+),
03、wei****016(¥13200+),04、大***流(¥12600+),
05、Fis****915(¥4200+),06、h****i(¥4100+),
07、Q**(¥3400+),08、自******点(¥2400+),
09、h*****x(¥1400+),10、c****e(¥1100+),
11、be*****ha(¥800+),12、13********8(¥800+)。
相似文档                                   自信AI助手自信AI助手
搜索标签

当前位置:首页 > 考试专区 > 高考

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服