收藏 分销(赏)

数学建模人口增长模型.pdf

上传人:天**** 文档编号:4540633 上传时间:2024-09-27 格式:PDF 页数:30 大小:320.34KB
下载 相关 举报
数学建模人口增长模型.pdf_第1页
第1页 / 共30页
数学建模人口增长模型.pdf_第2页
第2页 / 共30页
数学建模人口增长模型.pdf_第3页
第3页 / 共30页
数学建模人口增长模型.pdf_第4页
第4页 / 共30页
数学建模人口增长模型.pdf_第5页
第5页 / 共30页
点击查看更多>>
资源描述

1、1人口增长预测模型人口增长预测模型摘要摘要本文建立了我国人口增长的预测模型,对各年份全国人口总量增长的中短期和长期趋势作出了预测,并对人口老龄化、人口抚养比等一系列评价指标进行了预测。最后提出了有关人口控制与管理的措施。模型:建立了 Logistic 人口阻滞增长模型,利用附件 2 中数据,结合网上查找补充的数据,分别根据从 1954 年、1963 年、1980 年到 2005 年三组总人口数据建立模型,进行预测,把预测结果与附件 1国家人口发展战略研究报告中提供的预测值进行分析比较。得出运用 1980 年到 2005 年的总人口数建立模型预测效果好,拟合的曲线的可决系数为 0.9987。运用

2、 1980 年到 2005 年总人口数据预测得到 2010 年、2020年、2033 年我国的总人口数分别为 13.55357 亿、14.18440 亿、14.70172 亿。模型:考虑到人口年龄结构对人口增长的影响,建立了按年龄分布的女性模型(Leslie 模型):以附件 2 中提供的 2001 年的有关数据,构造 Leslie 矩阵,建立相应 Leslie 模型;然后,根据中外专家给出的人口更替率 1.8,构造 Leslie 矩阵,建立相应的 Leslie 模型。首先,分别预测 2002 年到 2050 年我国总人口数、劳动年龄人口数、老年人口数(见附录 8),然后再用预测求得的数据分别对

3、全国总人口数、劳动年龄人口数的发展情况进行分析,得出:我国总人口在 2010 年达到 14.2609 亿人,在 2020 年达到14.9513 亿人,在 2023 年达到峰值 14.985 亿人;预测我国在短期内劳动力不缺,但须加强劳动力结构方面的调整。其次,对人口老龄化问题、人口抚养比进行分析。得到我国老龄化在加速,预计本世纪 40 年代中后期形成老龄人口高峰平台,60 岁以上老年人口达 4.45 亿人,比重达 33.277%;65 岁以上老年人口达 3.51 亿人,比重达 25.53%;人口抚养呈现增加的趋势。再次,讨论我国人口的控制,预测出将来我国育龄妇女人数与生育旺盛期育龄妇女人数,得

4、到育龄妇女人数在短期内将达到高峰,随后又下降的趋势的结论。最后,分别对模型与模型进行残差分析、优缺点评价与推广。关键词关键词 Logistic 人口模型 Leslie 人口模型 人口增长预测 MATLAB 软件21、问题重述、问题重述一、背景知识:一、背景知识:中国是一个人口大国,人口问题始终是制约我国发展的关键因素之一。我国人口发展经历了多个阶段,近年来中国的人口发展出现了一些新的特点,例如,老龄化进程加速、出生人口性别比持续升高,以及乡村人口城镇化等因素,这些都影响着中国人口的增长。全面建设小康社会时期是我国社会快速转型期,人口发展面临着前所未有的复杂局面,人口安全面临的风险依然存在二、相

5、关数据:二、相关数据:附件 1 国家人口发展战略研究报告附件 2 人口数据(中国人口统计年鉴中的部分数据)及其说明根据已有数据三、要解决的问题三、要解决的问题:1、试从中国的实际情况和人口增长的上述特点出发,参考附件 2 中的相关数据(也可以搜索相关文献和补充新的数据),建立中国人口增长的数学模型,并由此对中国人口增长的中短期和长期趋势做出预测;特别要指出你们模型中的优点与不足之处。2、利用所建立模型的预测结果,参照附件 1 的相关叙述对反映中国人口增长特点的一系列指标如人口老龄化、人口抚养比等进行分析预测。3、根据模型的计算结果,对未来人口发展高峰进行预测并针对中国人口的调控和管理进行分析。

6、22、问题分析、问题分析人口的变化受到众多方面因素的影响,因此对人口的预测与控制也就十分复杂,很难在一个模型中综合考虑到各个因素的影响。为了更好的解决此问题,我们分析了题目以及附录 1 中所给的相关信息,考虑到可以根据对人口增长不同的评价指标及不同的时期建立多个模型分别加以讨论。一、从附件 1 中,我们看到过去一些专家对中国的总人口数做出了 2010 年、2020年分别达到 13.6 亿人和 14.5 亿人,2033 年前后达到峰值 15 亿人左右的预测。因而,我们也可以先对总人口的增长趋势做出自己的预测与专家预测数据进行比较,对于预测所要用到的一些相关数据,我们作了相应的补充,由此我们建立了

7、模型:阻滞增长模型。二、模型只考虑了人口总数,对人口总数进行了预测分析。但实际中在对人口进行分析时,按年龄段分布的人口结构是非常重要的。在人口总数一定时,不同年龄段的人的生育率和死亡率是不同的,它们对人口未来发展的影响也是很不一样的。为了讨论不同年龄段的人口分布对人口增长的影响,我们依据附件 2 建立了模型:按年龄分布的 Leslie 模型。三、由模型和模型的结果我们预测了人口总数的发展趋势,由模型的计算结果我们还能够得到各年份处在各年龄段的人口数量、男女比率的预测值。根据这些预测值我们可以计算出反映人口增长特点的其他指标,由此我们可以对模型的计算结果进行进一步的分析。333、合理的假设、合理

8、的假设1、社会稳定,不会发生重大自然灾害和战争不随时间而变化iisb,2、超过 90 岁的妇女(老寿星)都按 90 岁年龄计算3、在较短的时间内,平均年龄变化较小,可以认为不变4、不考虑移民对人口总数的影响44、名词解释与符号说明、名词解释与符号说明一、名词解释一、名词解释1、总和生育率指一定时期(如某一年)各年龄组妇女生育率的合计数,说明每名妇女按照某一年的各年龄组生育率度过育龄期,平均可能生育的子女数,是衡量生育水平最常用的指标之一。2、更替水平指这样一个生育水平,同一批妇女生育女儿的数量恰好能替代她们本身。一旦达到生育更替水平,出生和死亡将逐渐趋于均衡,在没有国际迁入与迁出的情况下,人口

9、将最终停止增长,保持稳定状态。3、人口抚养比指人口总体中非劳动年龄人口数与劳动年龄人口数之比。通常用百分比表示。说明每 100 名劳动年龄人口大致要负担多少名非劳动年龄人口。用于从人口角度反映人口与经济发展的基本关系。根据劳动年龄人口的两种不同定义(15-59 岁人口或 15-64 岁人口),计算总抚养有两种方式4、人口老龄化指人口中老年人比重日益上升的现象。促使人口老龄化的直接原因是生育率和死亡率降低,主要是生育率降低。一般认为,如果人口中 65 岁及以上老年人口比重超过 7%,或 60 岁及以上老年人口比重超过 10%,那么该人口就属于老年型。5、出生人口性别比是活产男婴数与活产女婴数的比

10、值,通常用女婴数量为100 时所对应的男婴数来表示。正常情况下,出生性别比是由生物学规律决定的,保持在 103107 之间。二、符号说明二、符号说明序号序号符号符号意义意义1:t表示年份(选定初始年份的)0t2r人口增长率3:x人口数量4:mx自然资源和环境条件所能容纳的最大人口数量5:2R可决系数6:mitniL,2,1),(在时间段 第 年龄组的人口总数ti7:)90,2,1,0Libi(第 年龄组的生育率i8:)90,2,1,0Lidi(第 年龄组的死亡率i9:)90,2,1,0(Lisi第 年龄组的存活率i10:LLeslie 矩阵11:0Z2001 年全国人口总数12:sz2001

11、年城市总人口13:zz2001 年镇总人口414:xz2001 年乡总人口15:miniL,2,1),0(2001 年第 年龄段的人口总数i16:)3,2,1(ivi时分别表示市、镇、乡的女孩出生率3,2,1i17:)j(L时段具有劳动能力的人口j18:)j(社会的抚养比指数19:k总和生育率20:)(jKi时段年龄组中女性所占的百分比ji55、模型的建立与求解、模型的建立与求解模型模型:阻滞增长模型(:阻滞增长模型(LogisticLogistic 模型)模型)11一、模型的准备阻滞增长模型的原理:阻滞增长模型是考虑到自然资源、环境条件等因素对人口增长的阻滞作用,对指数增长模型的基本假设进行

12、修改后得到的。阻滞作用体现在对人口增长率 的影响上,使得 随着人口数量的增加而下降。若将 表示为的函数rrxrx。则它应是减函数。于是有:)(xr (1)0)0(,)(xxxxrdtdx对的一个最简单的假定是,设为的线性函数,即)(xr)(xrx )0,0()(srsxrxr(2)设自然资源和环境条件所能容纳的最大人口数量,当时人口不再增长,mxmxx 即增长率,代入(2)式得,于是(2)式为0)(mxrmxrs )1()(mxxrxr(3)将(3)代入方程(1)得:0)0()1(xxxxrxdtdxm (4)解方程(4)可得:rtmmexxxtx)1(1)(0(5)5二、模型的建立为了对以后

13、一定时期内的人口数做出预测,我们首先从中国经济统计数据库(http:/211.86.245.155/index.aspx)上查到我国从 1954 年到 2005 年全国总人口的数据如表 1。表 1 各年份全国总人口数(单位:千万)年份195419551956195719581959196019611962总人口60.261.562.864.666.067.266.265.967.3年份196319641965196619671968196919701971总人口69.170.472.574.576.378.580.783.085.2年份19721973197419751976197719781

14、9791980总人口87.189.290.992.493.795.096.25997.598.705年份198119821983198419851986198719881989总人口100.1101.654103.008104.357105.851107.5109.3111.026112.704年份199019911992199319941995199619971998总人口114.333115.823117.171118.517119.850121.121122.389123.626124.761年份1999200020012002200320042005总人口125.786126.7431

15、27.627128.453129.227129.988130.7561、将 1954 年看成初始时刻即,则 1955 为,以次类推,以 2005 年为0t1t作为终时刻。用函数(5)对表 1 中的数据进行非线性拟合,运用 Matlab 编程51t(程序见附录 1)得到相关的参数,可以算出可决系数(可-0.0336,180.9871 rxm决系数是判别曲线拟合效果的一个指标):9959.0)yy()y y(1R51i2i51i2ii2由可决系数来看拟合的效果比较理想。所以得到中国各年份人口变化趋势的拟合曲线:tetx0336.0.0)12.609871.180(19871.180)((6)根据曲

16、线(6)我们可以对 2010 年()、2020 年()、及 2033 年(56t66t)79t进行预测得(单位:千万):6028.158)79(,5400.148)66(,6161.138)56(xxx结果分析:从附录 1 所给信息可知从 1951 年至 1958 年为我国第一次出生人口高峰,形成了中国人口规模“由缓到快”的增长基础;因此这段时期人口波动较大,可能影响模型结果的准确性。1959、1960、1961 年为三年自然灾害时期,这段时期人口的增长受到很大影响,1962 年处于这种影响的滞后期,人口的增长也受到很大影响。总的来说 1951-1962 年的人口增长的随机误差不是服从正态分布

17、,6由于上面的曲线拟合是用最小二乘法,所以很难保证拟合的准确性。因此我们再选择 1963 年作为初始年份对表 1 中的数据进行拟合。2、将 1963 年看成初始时刻即,以 2005 年为作为终时刻。运用0t32tMatlab 编程(程序见附录 2)得到相关的参数,可以算出可0.0484,151.4513 rxm决系数得到中国各年份人口变化趋势的另一拟合曲线:9994.02R tetx0484.0)11.694513.151(14513.151)((7)根据曲线(7)我们可以对 2010 年()、2020 年()、及 2033 年(47t57t)70t进行预测得(单位:千万):145.5908

18、)70(,140.8168)57(,134.9190 )47(xxx结果分析:1963 年-1979 年其间,人口的增长基本上是按照自然的规律增长,特别是在农村是这样,城市受到收入的影响,生育率较低,但都有规律可寻。总的来说,人口增长的外界大的干扰因素基本上没有,可以认为这一阶段随机误差服从正态分布;1980-2005 年这一时间段,虽然人口的增长受到国家计划生育政策的控制,但计划生育的政策是基本稳定的,这一阶段随机误差也应服从正态分布(当然均值与方差可能不同)因此用最小二乘法拟合所得到的结果应有较大的可信度。3、从 1980-2005 年,国家计划生育政策逐渐得到完善及贯彻落实,这个时期的人

19、口增长受到国家计划生育政策的控制,人口的增长方式与上述的两个阶段都不同。因此我们进一步选择 1980 年作为初始年份 2005 年作为终时刻进行拟合。运用 Matlab 编程(程序见附录 3)得到相关的参数,可以算出可决系数0.0477,153.5351 rxm得到中国各年份人口变化趋势的第三条拟合曲线:9987.02R (8tetx0477.0)1705.985351.153(15351.153)()根据曲线(7)我们可以对 2010 年()、2020 年()、及 2033 年(30t40t)53t进行预测得(单位:千万):147.0172 )53(,141.8440)40(,135.535

20、7 )30(xxx结果分析:这一时期,国家虽然对人口大增长进行了干预,但国家的计划生育的政策是基本稳定的,在此其间没有其他大的干扰,所以人口增长的随机误差应服从正态分布。所以我们的结果应是比较可信的。我们分别根据拟合曲线(6)、(7)、(8)对各年份中国总人口进行预测得到结果如表 2:表 2 各年份全国总人口用不同拟合曲线预测数(单位:千万)全国总人口预测(单位:千万)年份预测曲线(6)预测曲线(7)预测曲线(8)2000126.7649126.3338126.4732003130.5141129.2303129.516872006134.1131.8447132.27582009137.51

21、6134.1926134.76382012140.7577136.2917136.99712015143.8231138.1607138.99332018146.7117139.819140.7712021149.4251141.2856142.34892024151.9662142.579143.74522027154.3392143.7168144.97782030156.5494144.7157146.06322033158.6028145.5908147.01722036160.5063146.3562147.85412039162.267147.0247148.58712042163

22、.8924147.6077149.22842045165.3903148.1158149.78862048166.7683148.558150.2775由上表可以看出:用拟合曲线(6)预测得到的数据比较大,在 2024 年总人口就已经超过了 151.9662 千万,而且一直以比较快的速度增长到 2048 年达到了 166.7683千万。用拟合曲线(7)预测得到的数据偏小,到 2048 年人口只有 148.558 千万。相比较而言用拟合曲线(8)预测的数据比较接近附件 1 中的预测。画出图形如图 1:对各年份全国总人口的预测100110120130140150160170180200020062

23、012201820242030203620422048年份人口数预测曲线(6)预测曲线(7)预测曲线(8)图 1:对各年份全国总人口数的预测 模型模型:按年龄分布的:按年龄分布的 LeslieLeslie 模型模型22一、模型的准备将人口按年龄大小等间隔地划分成个年龄组(譬如每 10 岁一组),模型要讨论m在不同时间人口的年龄分布,对时间也加以离散化,其单位与年龄组的间隔相同。时间离散化为.设在时间段 第 年龄组的人口总数为,定义向L2,1,0ttimitniL,2,1),(量,模型要研究的是女性的人口分布随 的变化规律,Tmtntntntn)(),(),()(21L)(tnt从而进一步研究总

24、人口数等指标的变化规律。设第 年龄组的生育率为,即是单位时间第 年龄组的每个女性平均生育女儿iibibi8的人数;第 年龄组的死亡率为,即是单位时间第 年龄组女性死亡人数与总人数iididi之比,称为存活率。设、不随时间 变化,根据、和的定义写出iids1ibistibis)(tni与应满足关系:)(tni)1(tni 1,2,1),()1()()1(11mitnstntnbtniiimiiiiL(9)在(9)式中我们假设中已经扣除婴儿死亡率,即扣除了在时段 以后出生而活ibt不到的那些婴儿。若记矩阵1t 000000121121mmmsssbbbbLOML(10)则(9)式可写作 )()1(

25、tLntn(11)当、已知时,对任意的有L)0(nL,2,1t )0()(nLtnt(12)若(10)中的元素满足();1,2,1,0misiL(),且至少一个。mibi,2,1,0L0ib则矩阵称为 Leslie 矩阵。L 只要我们求出 Leslie 矩阵并根据人口分布的初始向量,我们就可以求出L)0(n时段的人口分布向量。t)(tn二、模型的建立我们以 2001 年为初始年份对以后各年的女性总数及总人口数进行预测,根据附件2 中所给数据,以一岁为间距对女性分组。(1)计算 2001 年处在各个年龄上的妇女人数的分布向量:)90,2,1,0),0(Lini(附件 2 给了 2001 年中国人

26、口抽样调查数据,提取为表 3表 3城市男147907城市女147465镇男80279镇女77976乡男394690乡女3722429根据抽样调查的结果,可以算出 2001 年城市、镇、乡人口占 2001 年全国总人口的比率分别为:6283.0,1297.0,242.0 xzsppp我们由表 1 数据知 2001 年全国总人口(单位:千万),因此可以算出627.1270Z2001 年城市、镇、乡的总人口分别为(单位:千万):、885.300zpzss548.160zpzzz194.800zpzxx根据附件 2 给的 2001 年城市、镇、乡各个年龄段的女性比率,可以分别算出 2001年城市、镇、

27、乡处在第年龄段的女性的总数分别为)90,2,1,0(Lii。以城市为例,设 2001 年城市中处在 年龄段妇女占城市总人口)0(,)0(,)0(321iiinnni比率分别为,则(镇、乡类似)。于是可以算出 2001 年处在第iPsiiZPn)0(1年龄段上的妇女总人数)90,2,1,0(Lii(见附录 7)。)0()0()0()0(321iiiinnnn(2)计算处在第年龄段的每个女性平均生育女儿的人数)90,2,1,0(Lii。附件 2 中分别给出了 2001 年城市、镇、乡育龄妇女(15 岁49)90,2,1,0(Libi岁)的生育率(此处应该是包含男孩和女孩)(或时都为)90,1,0(

28、Lii15i49i0),则可以分别算出 2001 年处在第年龄段的城市、镇、乡育龄妇女总共)90,1,0(Lii生育的小孩数(包含男孩和女孩),记为:。)49,16,15(,)49,16,15(,)49,16,15(321LLLiHiHiHiii以城市为例计算:)49,16,15(1LiHi(镇、乡类似)。)49,16,15()0(*)49,16,15(111LLinbiHiii附件 2 中还分别给出了 2001 年市、镇、乡的男女出生人口性别比(女321,ccc100 计),据此可以分别计算出城市、镇、乡女孩的出生率。由)3,2,1(100iccviii此就可以求出 2001 年处在第年龄段

29、的每个女性平均生育女儿的人数:)49,15(Lii,)49,15()0(332211LinvHvHvHbiiiii由于总和生育率:经计算得到总和生育率小于 1.8,误差很大,我们389.1bS4915ii对生育率进行修正:具体计算结果见附录 7。i1ib*1)S)/Sv8.1(b(3)计算第 年龄段的女性总存活率率:i)90,2,1,0(Lidi记第年龄段的女性的死亡率为。附件 2 中分别给出了城市、镇、)90,2,1,0(Liiid乡处在第年龄段的女性死亡率,则)90,2,1,0(Lii)90,2,1,0(,321Lidddiii处在第 年龄段的女性总死亡率为:i)90,2,1,0(Lidi

30、,)90,2,1,0()0()0()0()0(332211Linnbnbnddiiiiiiii于是总存活率为:见附录 4。用 EXCEL 对计算出来的数据进行整理,然后运iids110用 MATLAB 软件进行编程,计算出 Leslie 矩阵,于是可以用上面(12)式)0()(nLtnt进行预测。三、对模型结果作进一步讨论我国人口发展形势复杂,目前人口的低生育水平面临着严峻的挑战,下面我们分别从如下方面分析预测我国人口发展将要面临的复杂局面。(1)人口总量与劳动力人口的发展变化根据考虑种群结构的 Leslie 离散模型,利用 2001 年的数据建立人口预测模型。通过分析,计算出我国人口的预测值

31、,对应作出的我国劳动年龄人口与总人口的折线图如下:6789101112131415162001200520092013201720212025202920332037204120452049年份人劳动年龄人口总人口图 2 我国全国总人口与劳动年龄人口折线图根据图 2 可以知道从 2001 年到 2023 年预测我国全国总人口是呈现上升趋势的,随后几年呈现缓慢下降的趋势。总人口在 2010 年、2020 年分别达到 14.2609 亿人和14.9513 亿人,在 2023 年达到峰值 14.985 亿人,在 2033 年达到 14.7455 亿人。把预测数值与附件 2 中所提供的预测数值进行比较

32、,发现我们预测的未来人口的高峰期提前10 年。这一方面可能由我国男女的出生性别比例中女性所占的比例较小的原因;另一方面,我们计算出人口更替率仅为 1.42(此为 5 年的均值),而中外专家对我国 90 年代中期以来的人口更替率的计算结果为 1.8(见附录 10),两者相差甚远,这说明附录-提供的数据可能不够真实,从而导致了我国人口峰值的预测年份提前。根据图 2,我国劳动年龄人口庞大,15-64 岁的劳动年龄人口 2010 年为 10.4421亿人,2013 年将达到高峰 10.4852 亿人,随后劳动年龄人口呈现下降的趋势。由此,可知在相当长的时间内,我国不缺劳动力,但需要加强劳动力结构性的调

33、整,同时由于我国计划生育等宏观政策的影响,近几年总和生育率已降低到 1.8,并将稳定在 1.8的水平上,所以经过较长的时期,我国的劳动年龄人口将有所降低。(2)人口老龄化与人口抚养比通过计算分析人口结构持续老龄化,运用 Leslie 离散模型,通过 MATLAB 软件计算出我国 60 岁以上与 65 岁以上的老龄人口数,做出散点图如下:11我国老年人口预测01234520012004200720102013201620192022202520282031203420372040204320462049年份人数60 老年人65-老年人图 3 我国老年人口预测值的折线图从图 3 可以直观的看出我国

34、老龄人口在持续增加,说明我国老龄化进程在加速。同时做出未来我国老龄人口占总人口的比例的折线图如下:我国老年人口占总人口的比例00.10.20.30.42001200520092013201720212025202920332037204120452049年份比例60-老年人占总人数的比例65-老年人占总人数的比例图 4 我国老龄人口占总人口预测比例的折线图从图 3,图 4 得到:2001 年我国 60 岁以上老年人口已达到 1.5538 亿人,占总人口的 11.5693%。到 2020 年,60 岁以上老年人口将达到 2.907 亿人比重为 19.443%;65岁以上老年人口将达到 2.062

35、8 亿人比重从 2000 年的 8.009%增长到 13.797%。预计本世纪 40 年代中后期形成老龄人口高峰平台,60 岁以上老年人口达 4.45 亿人,比重达33.277%;65 岁以上老年人口达 3.51 亿人,比重达 25.53%。综上可知我国老龄人口数量大,老龄化速度快,高龄趋势明显,加上我国人口基数大,所以我国是个老龄人口多的国家。老龄化也在一定程度上导致了我国人口抚养比的不断增高。下面计算人口抚养比指数:设与分别为男性与女性中具有劳动能力的年龄组,则 时段具有劳21l,l K21ll Kj动能力的人口为,2121lliillii)j,i(j)NK)j,i(N)j(K1 L(j)

36、而为 时段由社会抚养的失去劳动能力与老人或尚未具有劳动能力的为成年)j(L)j(Nj12人的数量。定义社会的抚养比指数,即平均每一劳动者抚养的无劳动L(j)L(j)N(j)j(能力的人数。我们以 014 岁为没有劳动能力的儿童,以 15-64 岁为具有劳动能力的年龄劳动人口,以 65 岁及以上的为老龄人口。首先,通过 MATLAB 编程计算出 2002 到2051 年 0-14 岁、15-64 岁、65 岁及 5 以上三段的人数;其次,根据人口抚养比的含义,计算出每一年份的人口抚养比得出人口抚养比。得出的每年人口抚养比的折线图如下:人口抚养比00.10.20.30.40.50.60.72001

37、2004200720102013201620192022202520282031203420372040204320462049年份比例总抚养比图 5 预测人口抚养比从图 5 可以看出预测的以后各年的人口抚养比呈增长的趋势。人口抚养比比较高主要原因有:每年新生婴儿数目在增加;老龄化的加剧,老龄人口数量大;15-64 岁年龄段中的人的残疾、生病而无劳动能力等。(3)人口调控与管理现阶段我国生育水平的不稳定性,根据建立的 Leslie 模型,运用 MATLAB 软件计算出 2000 年到 2050 年我国育龄妇女(15-49 岁)人口,并做出的散点图如下:200020052010201520202

38、02520302035204020452050240260280300320340360380万 万万 万 万图 6 未来我国育龄妇女(15-49 岁)人口预测从图 6 中可以看出我国育龄妇女(15-49 岁)人口在 2010 年左右到达到高峰,13200020052010201520202025203020352040204520506065707580859095100105110万 万万 万 万图 7 未来我国生育旺盛期育龄妇女(20-29)人数预测从图 7 我们发现,我国生育旺盛期育龄妇女(20-29)人数在 2012 年将达到高峰,到 2025 年左右有进入一个小低谷,然后再 203

39、7 年左右有达到一个小高峰。第二个我国生育旺盛期育龄妇女(20-29)人数小高峰的原因在于在 2012 年人口出生高峰期的女婴到 2037 年时达到生育旺盛期,因此,在 2025 年生育旺盛期育龄妇女(20-29)人数达到低谷时有回升的形势。66、误差分析与灵敏度分析、误差分析与灵敏度分析一、模型的残差分析:一、模型的残差分析:1、运用 Matlab 软件计算出用 1954 年到 2005 年的总人口数进行拟合产生的残差,再利用 EXCEL 作出残差的散点图如下:残差分析-5-4-3-2-10121954195719601963196619691972197519781981198419871

40、99019931996199920022005年份残差值系列1图 8 残差分析从图 8 可以看出残差在坐标轴上下波动,但是,不是呈现正态分布,并且残0 x 差绝对值之和为 57.9992,是比较大,因此拟合的效果不太好。2、利用 1963 年到 2005 年的总人口数,根据 Logistic 模型的形式,用 Matlab 软件进行拟合,并求出残差序列,再利用 EXCEL 进行处理,并作出残差散点图如下:14残差分析-2-10123196319661969197219751978198119841987199019931996199920022005年份残差值系列2图 9 残差分析图通过图 9,

41、可以看出残差值大致分布在坐标轴的上下,呈现对称分布,又有xMatlab 软件计算出拟合的残差绝对值之和为 27.8046,因此效果较好。3、利用 1980 年到 2005 年的人口总数居,同样运用 Matlab、EXCEL 软件进行分析、处理,作出散点图如下:残差分析-1.2-1-0.8-0.6-0.4-0.200.20.40.61980198219841986198819901992199419961998200020022004年份差值系列3图 10 残差分析图通过 Matlab 软件计算,得出拟合的残差绝对值之和为 10.1699,从图 10 可以看出,图形基本关于坐标轴对称,所以你和效

42、果比较好。0 x 二、灵敏度分析:二、灵敏度分析:1、在不同的总合生育率下按照前面的方法分别计算从 2001 年到 2050 年全国人k口总数的预测值(程序见附录 6),并画出图形如图 111520002005201020152020202520302035204020452050120125130135140145150155160165万 万万 万 万k=1.6k=1.8k=2.0k=2.2图 11:在不同的 k 值下对各年份全国总人口数的预测 由图 11 可以看出当值很小时人口增长比较缓慢,达到峰值后人口数量很快下降k出现严重负增长;当值很大时人口增长速度很快,达到峰值后下降的速度缓慢,

43、在k此情况下人口数量急剧膨胀。只有当值适中时,总人口增长才比较稳定。k2、再在不同的总和生育率下按照前面的方法分别计算从 2001 年到 2050 年全国k老龄化变化趋势(程序见附录 6),并画出图形如图 12 200020052010201520202025203020352040204520500.450.50.550.60.65万 万万 万 万 万 万k=1.6k=1.8k=2.0k=2.2图 12:在不同的 k 值下对各年份老龄化变化趋势 由图 12 可以看出值越小,老龄化增大的速度越快;值越大老龄化指数增长平kk缓年龄结构稳定,有利于社会发展。由以上分析可知国家在制定人口政策时要多方

44、面考虑,如果只看重对人口总数的控制可能导致社会老龄化严重、劳动力不足这显然是不利于社会经济发展的;相反如16果为了防止社会老龄化加快而放任人口的增长,也会导致社会人口过多对资源和环境带来巨大压力。因此只有掌握好一个“平衡点”正确制定政策才能使国民经济持续增长,人民生活水平不断提高。77、模型的评价与推广、模型的评价与推广一、模型的优点:一、模型的优点:1、在用模型对各年全国人口总数预测时结合实际情况,分别用不同时间段的数据拟合确定了三个预测函数。并对三个函数预测的数据进行了对比分析,使模型的计算结果更加准确。2、利用 EXCEL 软件对数据进行处理并作出各种平面图,简便,直观、快捷;3、运用多

45、种数学软件进行计算,取长补短,使计算结果更加准确;4、在模型中我们充分考虑到不同年龄的个体具有不同的生育能力和死亡率,采用 leslie 模型,建立年龄结构的离散模型,并通过合理假设,在时间跨度不大的前提下,对人口数量仅此进行了预测,得到人口数量变化趋势图 2 与课题中未来我国总人口,劳动人口及人口扶养比预测 及未来我国人口老龄化预测趋势图基本一致。因为原始数据得到的人口总和生育率跟实际情况不符,我们对此进行了合理修正,使预测更为准确。在模型中我们还进行了参差分析,在模型中我们对不同的平均妇女生育胎数下人口总数及老龄化趋势进行了分析,得到适合平均生育胎数的最佳值。二、模型的缺点二、模型的缺点:

46、在模型假设中我们及不随时段的变迁而改变这一理想状态下,但出生率及死ibip亡率会随时间的变化而有所该变,本模型没有建立与死亡率随时间变化的动态模型,ib因而存在一定的误差;三、模型的改进:三、模型的改进:随着人民的生活水平的提高和医疗卫生的改善,各年龄的死亡率不断下降,存活率不断提高。因此我们可以对 Leslie 模型进行进一步改变:记时段年龄组中女性所占的百分比为,并设为育龄女性的年龄组,则ji)(jKi时段新生儿为j),()()()1,0(jiNjKjbjNiimijiNsjiNi,1),1()1,(1L我们引入控制变量,使得),(jih),(*)(jihjbi=1,这里,称为女性生育模式

47、,我们将 lestie 矩阵21),(iiijih151i49ji),(jih变成:jjNjBjAN*)()(117其中0)j(s000)j(s00)(1m0LLMMMMLLLLjA 000000)()(00)(21LLLLLLLMMLLLLLLLLLLjbjbjBii )(),()()(jKjihjjbii在一定时期内(这里 j 从 0 到 90),为平均生育胎数,和可视)(jsi),(jih)(jKi为与无关的常数,我们可以通过控制结婚年龄和生育两胎间的年龄差来求的最j),(jih佳值,从而达到控制人口数量和年龄结构的目的。四、模型的推四、模型的推广:本文首先不考虑年龄结构对人口增长的影响

48、,建立 Logistic 人口预测模型;然后,逐步改进,考虑年龄结构对人口增长的影响,建立 Leslie 模型,对人口增长进行预测,这种由简到繁,逐步加深的思路,可以应用到较复杂问题的处理上。参考文献参考文献1 姜启源,谢金星,叶俊.数学模型M.北京:.2003 年 8 月第三版;2 姜启源.数学模型M.北京:高等教育出版社.1987 年 4 月第一版;3 于洪彦.Excel 统计分析与决策M.北京:高等教育出版社.2006 年 4 月;4 胡守信,李柏年.基于 MATLAB 的数学实验M.北京:科学出版社.2004 年 6 月;5 扬启帆,康旭升,等.数学建模M.北京:高等教育出版社.200

49、6 年 5 月;6 于学军.中国人口科学2000 年第 2 期,时间:2000-4-6,中国人口信息网.18附录附录附录 1:t=0:51;%令1954年为初始年x=60.2 61.5 62.8 64.6 66 67.2 66.2 65.9 67.3 69.1 70.4 72.5 74.5 76.3 78.5 80.7 83 85.2 87.1 89.2 90.9 92.4 93.7 95 96.259 97.5 98.705 100.1 101.654 103.008 104.357 105.851 107.5 109.3 111.026 112.704 114.333 115.823 11

50、7.171 118.517 119.85 121.121 122.389 123.626 124.761 125.786 126.743 127.627 128.453 129.227 129.988 130.756;c,d=solve(c/(1+(c/60.2-1)*exp(-5*d)=67.2,c/(1+(c/60.2-1)*exp(-20*d)=90.9,c,d);%求初始参数b0=241.9598,0.02985;%初始参数值fun=inline(b(1)./(1+(b(1)/60.2-1).*exp(-b(2).*t),b,t);b1,r1,j1=nlinfit(t,x,fun,b0

展开阅读全文
部分上传会员的收益排行 01、路***(¥15400+),02、曲****(¥15300+),
03、wei****016(¥13200+),04、大***流(¥12600+),
05、Fis****915(¥4200+),06、h****i(¥4100+),
07、Q**(¥3400+),08、自******点(¥2400+),
09、h*****x(¥1400+),10、c****e(¥1100+),
11、be*****ha(¥800+),12、13********8(¥800+)。
相似文档                                   自信AI助手自信AI助手
搜索标签

当前位置:首页 > 教育专区 > 其他

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服