资源描述
2021-2022高考数学模拟试卷含解析
注意事项
1.考试结束后,请将本试卷和答题卡一并交回.
2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.
3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.
4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.
5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1.中,如果,则的形状是( )
A.等边三角形 B.直角三角形 C.等腰三角形 D.等腰直角三角形
2.如图在一个的二面角的棱有两个点,线段分别在这个二面角的两个半平面内,且都垂直于棱,且,则的长为( )
A.4 B. C.2 D.
3.已知抛物线的焦点为,是抛物线上两个不同的点,若,则线段的中点到轴的距离为( )
A.5 B.3 C. D.2
4.已知,则的值构成的集合是( )
A. B. C. D.
5.函数的最大值为,最小正周期为,则有序数对为( )
A. B. C. D.
6.直三棱柱中,,,则直线与所成的角的余弦值为( )
A. B. C. D.
7.已知集合,集合,则
A. B.或
C. D.
8.已知m为实数,直线:,:,则“”是“”的( )
A.充要条件 B.充分不必要条件
C.必要不充分条件 D.既不充分也不必要条件
9.已知是虚数单位,若,则( )
A. B.2 C. D.10
10.根据最小二乘法由一组样本点(其中),求得的回归方程是,则下列说法正确的是( )
A.至少有一个样本点落在回归直线上
B.若所有样本点都在回归直线上,则变量同的相关系数为1
C.对所有的解释变量(),的值一定与有误差
D.若回归直线的斜率,则变量x与y正相关
11.抛物线的焦点为F,点为该抛物线上的动点,若点,则的最小值为( )
A. B. C. D.
12.秦九韶是我国南宋时期的数学家,普州(现四川省安岳县)人,他在所著的《数书九章》中提出的多项式求值的秦九韶算法,至今仍是比较先进的算法.如图的程序框图给出了利用秦九韶算法求某多项式值的一个实例,若输入的值为2,则输出的值为
A. B. C. D.
二、填空题:本题共4小题,每小题5分,共20分。
13.已知向量,,,若,则______.
14.若实数满足不等式组则目标函数的最大值为__________.
15.若方程有两个不等实根,则实数的取值范围是_____________.
16.已知一组数据,1,0,,的方差为10,则________
三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。
17.(12分)已知,函数的最小值为1.
(1)证明:.
(2)若恒成立,求实数的最大值.
18.(12分)如图,是正方形,点在以为直径的半圆弧上(不与,重合),为线段的中点,现将正方形沿折起,使得平面平面.
(1)证明:平面.
(2)三棱锥的体积最大时,求二面角的余弦值.
19.(12分)如图,在平面直角坐标系xOy中,已知椭圆的离心率为,且过点. 为椭圆的右焦点, 为椭圆上关于原点对称的两点,连接分别交椭圆于两点.
⑴求椭圆的标准方程;
⑵若,求的值;
⑶设直线, 的斜率分别为, ,是否存在实数,使得,若存在,求出的值;若不存在,请说明理由.
20.(12分)如图所示,四棱锥P﹣ABCD中,PC⊥底面ABCD,PC=CD=2,E为AB的中点,底面四边形ABCD满足∠ADC=∠DCB=90°,AD=1,BC=1.
(Ⅰ)求证:平面PDE⊥平面PAC;
(Ⅱ)求直线PC与平面PDE所成角的正弦值;
(Ⅲ)求二面角D﹣PE﹣B的余弦值.
21.(12分)在平面直角坐标系中,曲线的参数方程为(为参数).以坐标原点为极点,轴正半轴为极轴建立极坐标系,直线的极坐标方程为.
(1)求曲线的普通方程和直线的直角坐标方程;
(2)设点,若直线与曲线相交于、两点,求的值
22.(10分)已知函数,
(Ⅰ)当时,证明;
(Ⅱ)已知点,点,设函数,当时,试判断的零点个数.
参考答案
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1.B
【解析】
化简得lgcosA=lg=﹣lg2,即,结合, 可求,得代入sinC=sinB,从而可求C,B,进而可判断.
【详解】
由,可得lgcosA==﹣lg2,∴,
∵,∴,,∴sinC=sinB==,∴tanC=,C=,B=.
故选:B
【点睛】
本题主要考查了对数的运算性质的应用,两角差的正弦公式的应用,解题的关键是灵活利用基本公式,属于基础题.
2.A
【解析】
由,两边平方后展开整理,即可求得,则的长可求.
【详解】
解:,
,
,,
,,
.
,
,
故选:.
【点睛】
本题考查了向量的多边形法则、数量积的运算性质、向量垂直与数量积的关系,考查了空间想象能力,考查了推理能力与计算能力,属于中档题.
3.D
【解析】
由抛物线方程可得焦点坐标及准线方程,由抛物线的定义可知,继而可求出,从而可求出的中点的横坐标,即为中点到轴的距离.
【详解】
解:由抛物线方程可知,,即,.设
则,即,所以.
所以线段的中点到轴的距离为.
故选:D.
【点睛】
本题考查了抛物线的定义,考查了抛物线的方程.本题的关键是由抛物线的定义求得两点横坐标的和.
4.C
【解析】
对分奇数、偶数进行讨论,利用诱导公式化简可得.
【详解】
为偶数时,;为奇数时,,则的值构成的集合为.
【点睛】
本题考查三角式的化简,诱导公式,分类讨论,属于基本题.
5.B
【解析】
函数(为辅助角)
∴函数的最大值为,最小正周期为
故选B
6.A
【解析】
设,延长至,使得,连,可证,得到(或补角)为所求的角,分别求出,解即可.
【详解】
设,延长至,使得,
连,在直三棱柱中,,
,四边形为平行四边形,
,(或补角)为直线与所成的角,
在中,,
在中,,
在中,
,
在中,,
在中,.
故选:A.
【点睛】
本题考查异面直线所成的角,要注意几何法求空间角的步骤“做”“证”“算”缺一不可,属于中档题.
7.C
【解析】
由可得,解得或,所以或,
又,所以,故选C.
8.A
【解析】
根据直线平行的等价条件,求出m的值,结合充分条件和必要条件的定义进行判断即可.
【详解】
当m=1时,两直线方程分别为直线l1:x+y﹣1=0,l2:x+y﹣2=0满足l1∥l2,即充分性成立,
当m=0时,两直线方程分别为y﹣1=0,和﹣2x﹣2=0,不满足条件.
当m≠0时,则l1∥l2⇒,
由得m2﹣3m+2=0得m=1或m=2,
由得m≠2,则m=1,
即“m=1”是“l1∥l2”的充要条件,
故答案为:A
【点睛】
(1)本题主要考查充要条件的判断,考查两直线平行的等价条件,意在考查学生对这些知识的掌握水平和分析推理能力.(2) 本题也可以利用下面的结论解答,直线和直线平行,则且两直线不重合,求出参数的值后要代入检验看两直线是否重合.
9.C
【解析】
根据复数模的性质计算即可.
【详解】
因为,
所以,
,
故选:C
【点睛】
本题主要考查了复数模的定义及复数模的性质,属于容易题.
10.D
【解析】
对每一个选项逐一分析判断得解.
【详解】
回归直线必过样本数据中心点,但样本点可能全部不在回归直线上﹐故A错误;
所有样本点都在回归直线上,则变量间的相关系数为,故B错误;
若所有的样本点都在回归直线上,则的值与相等,故C错误;
相关系数r与符号相同,若回归直线的斜率,则,样本点分布应从左到右是上升的,则变量x与y正相关,故D正确.
故选D.
【点睛】
本题主要考查线性回归方程的性质,意在考查学生对该知识的理解掌握水平和分析推理能力.
11.B
【解析】
通过抛物线的定义,转化,要使有最小值,只需最大即可,作出切线方程即可求出比值的最小值.
【详解】
解:由题意可知,抛物线的准线方程为,,
过作垂直直线于,
由抛物线的定义可知,连结,当是抛物线的切线时,有最小值,则最大,即最大,就是直线的斜率最大,
设在的方程为:,所以,
解得:,
所以,解得,
所以,
.
故选:.
【点睛】
本题考查抛物线的基本性质,直线与抛物线的位置关系,转化思想的应用,属于基础题.
12.C
【解析】
由题意,模拟程序的运行,依次写出每次循环得到的,的值,当时,不满足条件,跳出循环,输出的值.
【详解】
解:初始值,,程序运行过程如下表所示:
,
,,
,,
,,
,,
,,
,,
,,
,,
,,
,,
跳出循环,输出的值为
其中①
②
①—②得
.
故选:.
【点睛】
本题主要考查了循环结构的程序框图的应用,正确依次写出每次循环得到,的值是解题的关键,属于基础题.
二、填空题:本题共4小题,每小题5分,共20分。
13.-1
【解析】
由向量垂直得向量的数量积为0,根据数量积的坐标运算可得结论.
【详解】
由已知,∵,∴,.
故答案为:-1.
【点睛】
本题考查向量垂直的坐标运算.掌握向量垂直与数量积的关系是解题关键.
14.12
【解析】
画出约束条件的可行域,求出最优解,即可求解目标函数的最大值.
【详解】
根据约束条件画出可行域,如下图,由,解得
目标函数,当过点时,有最大值,且最大值为.
故答案为:.
【点睛】
本题考查线性规划的简单应用,属于基础题.
15.
【解析】
由知x>0,故.
令,则.
当时,;当时,.
所以在(0,e)上递增,在(e,+)上递减.
故,即.
16.7或
【解析】
依据方差公式列出方程,解出即可.
【详解】
,1,0,,的平均数为,
所以
解得或.
【点睛】
本题主要考查方差公式的应用.
三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。
17.(1)2;(2)
【解析】
分析:(1)将转化为分段函数,求函数的最小值
(2)分离参数,利用基本不等式证明即可.
详解:(Ⅰ)证明:
,显然在上单调递减,在上单调递增,
所以的最小值为,即.
(Ⅱ)因为恒成立,所以恒成立,
当且仅当时,取得最小值,
所以,即实数的最大值为.
点睛:本题主要考查含两个绝对值的函数的最值和不等式的应用,第二问恒成立问题分离参数,利用基本不等式求解很关键,属于中档题.
18.(1)见解析(2)
【解析】
(1)利用面面垂直的性质定理证得平面,由此证得,根据圆的几何性质证得,由此证得平面.
(2)判断出三棱锥的体积最大时点的位置.建立空间直角坐标系,通过平面和平面的法向量,计算出二面角的余弦值.
【详解】
(1)证明:因为平面平面是正方形,
所以平面.
因为平面,所以.
因为点在以为直径的半圆弧上,所以.
又,所以平面.
(2)解:显然,当点位于的中点时,的面积最大,三棱锥的体积也最大.
不妨设,记中点为,
以为原点,分别以的方向为轴、轴、轴的正方向,
建立如图所示的空间直角坐标系,
则,
设平面的法向量为,
则令,得.
设平面的法向量为,
则令,得,
所以.
由图可知,二面角为锐角,故二面角的余弦值为.
【点睛】
本小题主要考查线面垂直的证明,考查二面角的求法,考查空间想象能力和逻辑推理能力,属于中档题.
19.(1)(2) (3)
【解析】
试题分析:(1);(2)由椭圆对称性,知,所以,此时直线方程为,故. (3)设,则,通过直线和椭圆方程,解得,,所以,即存在.
试题解析:
(1)设椭圆方程为,由题意知:
解之得:,所以椭圆方程为:
(2)若,由椭圆对称性,知,所以,
此时直线方程为,
由,得,解得(舍去),
故.
(3)设,则,
直线的方程为,代入椭圆方程,得
,
因为是该方程的一个解,所以点的横坐标,
又在直线上,所以,
同理,点坐标为,,
所以,
即存在,使得.
20.(Ⅰ)证明见解析(Ⅱ).(Ⅲ)﹣.
【解析】
(Ⅰ)由题知,如图以点为原点,直线分别为轴,建立空间直角坐标系,计算,证明,从而平面PAC,即可得证;
(Ⅱ)求解平面PDE的一个法向量,计算,即可得直线PC与平面PDE所成角的正弦值;
(Ⅲ)求解平面PBE的一个法向量,计算,即可得二面角D﹣PE﹣B的余弦值.
【详解】
(Ⅰ)PC⊥底面ABCD,,
如图以点为原点,直线分别为轴,建立空间直角坐标系,
则,
,,
,又,平面PAC,
平面PDE,平面PDE⊥平面PAC;
(Ⅱ)设为平面PDE的一个法向量,
又,
则,取,得
,
直线PC与平面PDE所成角的正弦值;
(Ⅲ)设为平面PBE的一个法向量,
又
则,取,得,
,
二面角D﹣PE﹣B的余弦值﹣.
【点睛】
本题主要考查了平面与平面的垂直,直线与平面所成角的计算,二面角大小的求解,考查了空间向量在立体几何中的应用,考查了学生的空间想象能力与运算求解能力.
21.(1)的普通方程为,的直角坐标方程为;(2).
【解析】
(1)在曲线的参数方程中消去参数可得出曲线的普通方程,利用两角和的正弦公式以及可将直线的极坐标方程化为普通方程;
(2)设直线的参数方程为(为参数),并设点、所对应的参数分别为、,利用韦达定理可求得的值.
【详解】
(1)由,得,,
曲线的普通方程为,
由,得,直线的直角坐标方程为;
(2)设直线的参数方程为(为参数),
代入,得,则,
设、两点对应参数分别为、,,,
,,.
【点睛】
本题考查了参数方程、极坐标方程与普通方程之间的转化,同时也考查了直线参数方程几何意义的应用,考查计算能力,属于中等题.
22.(Ⅰ)详见解析;(Ⅱ)1.
【解析】
(Ⅰ)令,;则.易得,.即可证明;
(Ⅱ),分①,② ,③ 当时,讨论的零点个数即可.
【详解】
解:(Ⅰ )令,;
则.
令,
,
易得在递减,在递增,
∴ ,∴在恒成立.
∵ 在递减,在递增.
∴ .
∵;
(Ⅱ )∵ 点,点,
∴ ,
.
① 当时,可知,∴
∴ ,,
∴ .
∴ 在单调递增,,.
∴ 在上有一个零点,
② 当时,,,
∴ ,∴在恒成立,
∴ 在无零点.
③ 当时,,
.
∴ 在单调递减,,.
∴ 在存在一个零点.
综上,的零点个数为1..
【点睛】
本题考查了利用导数解决函数零点问题,考查了分类讨论思想,属于压轴题.
展开阅读全文