资源描述
课时24 统计与概率的应用
知识点一 统计在实际中的应用Error! No bookmark name given.
1.某企业三个分厂生产同一种电子产品,三个分厂产量分布如图所示,现在用分层抽样方法从三个分厂生产的该产品中共抽取100件做使用寿命的测试,则第一分厂应抽取的件数为________;由所得样品的测试结果计算出第一、二、三分厂取出的产品的使用寿命平均值分别为1020小时、980小时、1030小时,估计这个企业所生产的该产品的平均使用寿命为________小时.
答案 50 1015
解析 第一分厂应抽取的件数为100×50%=50;该产品的平均使用寿命为1020×0.5+980×0.2+1030×0.3=1015.
2.甲、乙两位同学参加数学文化知识竞赛培训.现分别从他们在培训期间参加的若干次测试成绩中随机抽取8次,记录如下:
甲:82 81 79 78 95 88 93 84
乙:92 95 80 75 83 80 90 85
现要从中选派一人参加正式比赛,从所抽取的两组数据分析,你认为选派哪位同学参加较为合适?并说明理由.
解 派甲参赛比较合适.理由如下:
甲=×(82+81+79+78+95+88+93+84)=85,
乙=×(92+95+80+75+83+80+90+85)=85,
s=×[(78-85)2+(79-85)2+(81-85)2+(82-85)2+(84-85)2+(88-85)2+(93-85)2+(95-85)2]=35.5,
s=×[(75-85)2+(80-85)2+(80-85)2+(83-85)2+(85-85)2+(90-85)2+(92-85)2+(95-85)2]=41.
因为甲=乙,s<s,所以甲的成绩较稳定,派甲参赛比较合适.
(或派乙参赛比较合适.理由如下:从统计的角度看,甲获得85分以上(含85分)的频率为f1=,乙获得85分以上(含85分)的频率为f2==.因为f2>f1,所以派乙参赛比较合适.)
知识点二 概率在实际中的应用Error! No bookmark name given.
3.某活动小组为了估计装有5个白球和若干个红球(每个球除颜色外都相同)的袋中红球接近多少个,在不将袋中球倒出来的情况下,分小组进行摸球试验,两人一组,共20组进行摸球试验.其中一名学生摸球,另一名学生记录所摸球的颜色,并将球放回袋中摇匀,每一组做400次试验,汇总起来后,摸到红球次数为6000次.
(1)估计从袋中任意摸出一个球,恰好是红球的概率是________;
(2)请你估计袋中红球接近________个.
答案 (1) (2)15
解析 (1)∵20×400=8000,
∴摸到红球的频率为=,
∵试验次数很大,大量试验时,频率接近于理论概率,
∴估计从袋中任意摸出一个球,恰好是红球的概率是.
(2)设袋中红球有x个,根据题意得=,解得x=15,经检验x=15是原方程的解.
∴估计袋中红球接近15个.
4.已知某音响设备由A电视机,B影碟机,C线路,D左声道和E右声道五个部件组成,其中每个部件工作的概率如图所示,当且仅当A与B中有一个工作,C工作,D与E中有一个工作时能听到声音;且若D和E同时工作则有立体声效果.
(1)求能听到立体声效果的概率;
(2)求听不到声音的概率.
解 (1)能听到立体声效果的概率P1=[1-(1-0.9)×(1-0.95)]×0.95×0.94×0.94=0.8352229.
(2)能听到声音的概率P2=[1-(1-0.9)×(1-0.95)]×0.95×[1-(1-0.94)2]=0.9418471,
从而所求概率为1-P2=1-0.9418471=0.0581529.
5.如图所示,有两个可以自由转动的均匀转盘A,B.转盘A被平均分成三份,分别标上1,2,3三个数字;转盘B被平均分成四份,分别标上3,4,5,6四个数字.有人为甲、乙两人设计了一个游戏规则:自由转动转盘A与B,转盘停止后,指针各指向一个数字,将指针所指的两个数字相加,如果和是6,那么甲获胜;否则乙获胜.你认为这个游戏规则公平吗?如果公平,请说明理由;如果不公平,怎样修改规则才能使游戏对双方都公平?
解 列表如下:
BA
3
4
5
6
1
4
5
6
7
2
5
6
7
8
3
6
7
8
9
由表可知,等可能的结果有12种,和为6的结果只有3种.
因为P(和为6)==,即甲、乙获胜的概率不相等,
所以这个游戏规则不公平.
规则改为:自由转动转盘A与B,转盘停止后,指针各指向一个数字,将指针所指的两个数字相加,如果和小于等于6,那么甲获胜;否则乙获胜.此时游戏对双方都公平.
知识点三 统计与概率的综合应用Error! No bookmark name given.
6.为了解学生身高情况,某校以10%的比例对全校700名学生按性别进行分层抽样调查,测得身高情况的统计图如下:
(1)求该校男生的人数;
(2)估计该校学生身高在170~185 cm之间的概率;
(3)从样本中身高在180~190 cm之间的男生中任选2人,求至少有1人身高在185~190 cm之间的概率.
解 (1)样本中男生人数为2+5+14+13+4+2=40,由分层抽样比例为10%知全校男生人数为=400.
(2)由统计图知,样本中身高在170~185 cm之间的学生有14+13+4+3+1=35(人),样本容量为70,
所以样本中学生身高在170~185 cm之间的频率f==0.5.
故由f估计该校学生身高在170~185 cm之间的概率是0.5.
(3)样本中身高在180~185 cm之间的男生有4人,设其编号为①②③④;样本中身高在185~190 cm之间的男生有2人,设其编号为⑤⑥.
从上述6人中任选2人的树状图如图所示.
故从样本中身高在180~190 cm之间的男生中任选2人的所有可能结果数为15,且每种可能性相等,至少有1人身高在185~190 cm之间的可能结果数为9,因此所求的概率是=.
易错点 不能将实际问题转化为统计与概率问题求解致误Error! No bookmark name given.
7.在调查运动员服用兴奋剂的时候,给出两个问题作答,无关紧要的问题是:“你的身份证号码的尾数是奇数吗?”敏感的问题是:“你服用过兴奋剂吗?”然后要求被调查的运动员掷一枚硬币,如果出现正面向上,就回答第一个问题,否则回答第二个问题.
由于回答哪一个问题只有被测试者自己知道,所以应答者一般乐意如实地回答问题.
如我们把这种方法用于300个被调查的运动员,得到80个“是”的回答,试估计这群人中服用过兴奋剂的百分率.
易错分析 本题的易错之处是不能准确地将“80个‘是’”“一分为二”,得不出“5个回答‘是’的人服用过兴奋剂”这一结论,从而无法求解.
正解 因为掷硬币出现正面向上的概率为,我们期望大约有150人回答第一个问题,又身份证号码的尾数是奇数或偶数是等可能的.在回答第一个问题的150人中大约有一半人,即75人回答了“是”,其中5个回答“是”的人服用过兴奋剂,因此我们估计这群人中大约有3.33%的人服用过兴奋剂.
一、选择题
1.某校高二(1)班甲、乙两同学进行投篮比赛,他们进球的概率分别是和,且两人是否进球相互没有影响.现甲、乙各投篮一次,恰有一人进球的概率是( )
A. B. C. D.
答案 D
解析 有甲进球乙不进球、甲不进球乙进球两种情况,概率为P=×+×=.
2.某公司员工对户外运动分别持“喜欢”“不喜欢”和“一般”三种态度,其中持“一般”态度的比持“不喜欢”态度的多12人,按分层抽样方法从该公司全体员工中选出部分员工座谈户外运动,如果选出的人有6位对户外运动持“喜欢”态度,有1位对户外运动持“不喜欢”态度,有3位对户外运动持“一般”态度,那么这个公司全体员工中对户外运动持“喜欢”态度的有( )
A.36人 B.30人 C.24人 D.18人
答案 A
解析 设持“喜欢”“不喜欢”“一般”态度的人数分别为6x,x,3x,由题意得3x-x=12,x=6,所以持“喜欢”态度的有6x=36人.
3.在如图所示的一组数据的茎叶图中,有一个数字被污染后模糊不清,但曾计算得该组数据的极差与25%分位数之和为56,则被污染的数字为( )
A.2 B.3 C.4 D.5
答案 D
解析 由图可知,该组数据的极差为48-20=28,则该组数据的25%分位数为56-28=28,该组数据有12个,12×25%=3,设被污染的数字为x,则=28,得x=5.故选D.
4.五个人围坐在一张圆桌旁,每个人面前放着完全相同的硬币,所有人同时抛出自己的硬币.若硬币正面朝上,则这个人站起来;若硬币正面朝下,则这个人继续坐着.那么没有相邻的两个人站起来的概率为( )
A. B. C. D.
答案 C
解析 假设有甲、乙、丙、丁、戊五个人按顺序围成一桌,五个人同时抛出自己的硬币,基本事件总数为2×2×2×2×2=32.若五个人都坐着,有1种情况;若四个人坐着,一个人站着,有5种情况;若三个人坐着,不相邻的两个人站着,有甲丙、甲丁、乙丁、乙戊、丙戊5种情况,故没有相邻的两个人站起来所包含的基本事件共有1+5+5=11个,故所求的概率为.选C.
5.某校初三年级有400名学生,随机抽查了40名学生测试1分钟仰卧起坐的成绩(单位:次),将数据整理后绘制成如图所示的频率分布直方图.用样本估计总体,下列结论正确的是( )
A.该校初三学生1分钟仰卧起坐的次数的中位数为25
B.该校初三学生1分钟仰卧起坐的次数的众数为24
C.该校初三学生1分钟仰卧起坐的次数超过30的人数约有80
D.该校初三学生1分钟仰卧起坐的次数少于20的人数约为8
答案 C
解析 第一组数据的频率为0.02×5=0.1,第二组数据的频率为0.06×5=0.3,第三组数据的频率为0.08×5=0.4,∴中位数在第三组内,设中位数为25+x,则x×0.08=0.5-0.1-0.3=0.1,∴x=1.25,∴中位数为26.25,故A错误;第三组数据所在的矩形最高,第三组数据的中间值为27.5.∴众数为27.5,故B错误;1分钟仰卧起坐的次数超过30的频率为0.2,∴超过30次的人数为400×0.2=80,故C正确;1分钟仰卧起坐的次数少于20的频率为0.1,∴1分钟仰卧起坐的次数少于20的人数为400×0.1=40,故D错误.故选C.
6.有三个游戏规则如下,袋子中分别装有形状、大小相同的球,从袋中无放回地取球.
游戏1
游戏2
游戏3
袋中装有3个黑球和2个白球
袋中装有2个黑球和2个白球
袋中装有3个黑球和1个白球
从袋中取出2个球
从袋中取出2个球
从袋中取出2个球
若取出的两个球同色,则甲胜
若取出的两个球同色,则甲胜
若取出的两个球同色,则甲胜
若取出的两个球不同色,则乙胜
若取出的两个球不同色,则乙胜
若取出的两个球不同色,则乙胜
其中不公平的游戏是( )
A.游戏2 B.游戏3
C.游戏1和游戏2 D.游戏1和游戏3
答案 C
解析 对于游戏1,取出两球同色的概率为,取出两球不同色的概率为,不公平;
对于游戏2,取出两球同色的概率为,取出两球不同色的概率为,不公平;
对于游戏3,取出两球同色即全是黑球,概率为,取出两球不同色的概率为,公平.故选C.
二、填空题
7.已知某台纺纱机在1小时内发生0次、1次、2次断头的概率分别是0.8,0.12,0.05,则这台纺纱机在1小时内断头不超过两次的概率和断头超过两次的概率分别为________,________.
答案 0.97 0.03
解析 断头不超过两次的概率P1=0.8+0.12+0.05=0.97.于是,断头超过两次的概率P2=1-P1=1-0.97=0.03.
8.一篇关于“键盘侠”的时评引发了大家对“键盘侠”的热议(“键盘侠”一词描述了部分网民在现实生活中胆小怕事、自私自利,却习惯在网络上大放厥词的一种现象).某地新闻栏目对该地区群众对“键盘侠”的认可程度进行调查:在随机抽取的50人中,有14人持认可态度,其余持反对态度,若该地区有9600人,则可估计该地区对“键盘侠”持反对态度的有________人.
答案 6912
解析 在随机抽取的50人中,持反对态度的频率为1-=,所以可估计该地区对“键盘侠”持反对态度的有9600×=6912(人).
9.如图所示,从参加环保知识竞赛的学生中抽出40名,将其成绩(均为整数)整理后画出的频率分布直方图如下,从成绩是80分以上(包括80分)的学生中选2人,则他们在同一分数段的概率是________.
答案
解析 记“选出的2人在同一分数段”为事件E,80~90分之间有40×0.1=4人,设为a,b,c,d;90~100分之间有40×0.05=2人,设为A,B.从这6人中选出2人,有(a,b),(a,c),(a,d),(a,A),(a,B),(b,c),(b,d),(b,A),(b,B),(c,d),(c,A),(c,B),(d,A),(d,B),(A,B),共15个基本事件,且这15个基本事件发生的可能性是相等的,其中事件E包括(a,b),(a,c),(a,d)(b,c),(b,d),(c,d),(A,B),共7个基本事件,则P(E)=.
三、解答题
10.为了估计某自然保护区中天鹅的数量,可以使用以下方法:先从该保护区中捕出一定数量的天鹅,例如200只,给每只天鹅做上记号,不影响其存活,然后放回保护区,经过适当的时间,让其和保护区中其余的天鹅充分混合,再从保护区中捕出一定数量的天鹅,例如150只,查看其中有记号的天鹅,设有20只,试根据上述数据,估计该自然保护区中天鹅的数量.
解 设保护区中天鹅的数量约为n,假定每只天鹅被捕到的可能性是相等的,
从保护区中任捕一只,设事件A={捕到带有记号的天鹅},则P(A)=,①
第二次从保护区中捕出150只天鹅,其中有20只带有记号,由概率的统计定义可知P(A)=,②
由①②两式,得=,解得n=1500,
所以该自然保护区中天鹅的数量约为1500只.
11.一个家庭中有若干个小孩,假定生男孩和生女孩是等可能的,令A={一个家庭中既有男孩又有女孩},B={一个家庭中最多有一个女孩},对下述两种情形,请讨论A与B的独立性.
(1)家庭中有两个小孩;
(2)家庭中有三个小孩.
解 (1)有两个小孩的家庭,小孩性别的所有可能情况为Ω={(男,男),(男,女),(女,男),(女,女)},样本点个数为4,由等可能性知每个样本点发生的概率均为.
这时A={(男,女),(女,男)},B={(男,男),(男,女),(女,男)},AB={(男,女),(女,男)},于是P(A)=,P(B)=,P(AB)=.
显然P(AB)≠P(A)P(B),
所以事件A,B不相互独立.
(2)有三个小孩的家庭,小孩性别的所有可能情况为Ω={(男,男,男),(男,男,女),(男,女,男),(女,男,男),(男,女,女),(女,男,女),(女,女,男),(女,女,女)},样本点个数为8,由等可能性知每个样本点发生的概率均为.
这时A中含有6个样本点,B中含有4个样本点,AB中含有3个样本点.
于是P(A)==,P(B)==,P(AB)=.
显然P(AB)=P(A)P(B)成立,
所以事件A与B是相互独立的.
12.甲、乙两人在相同条件下各射击10次,每次中靶环数情况如图所示.
(1)请填写下表(写出计算过程):
平均数
方差
命中9环及9环以上的次数
甲
乙
(2)从下列三个不同的角度对这次测试结果进行分析:
①从平均数和方差相结合看(分析谁的成绩更稳定);
②从平均数和命中9环及9环以上的次数相结合看(分析谁的成绩好些);
③从折线图上两人射击命中环数的走势看(分析谁更有潜力).
解 由题图,知
甲射击10次中靶环数分别为9,5,7,8,7,6,8,6,7,7.
将它们由小到大排列为5,6,6,7,7,7,7,8,8,9.
乙射击10次中靶环数分别为2,4,6,8,7,7,8,9,9,10.
将它们由小到大排列为2,4,6,7,7,8,8,9,9,10.
(1)甲=×(5+6×2+7×4+8×2+9)=7,
乙=×(2+4+6+7×2+8×2+9×2+10)=7,
s=×[(5-7)2+(6-7)2×2+(7-7)2×4+(8-7)2×2+(9-7)2]=×(4+2+0+2+4)=1.2,
s=×[(2-7)2+(4-7)2+(6-7)2+(7-7)2×2+(8-7)2×2+(9-7)2×2+(10-7)2]
=×(25+9+1+0+2+8+9)=5.4.
填表如下:
平均数
方差
命中9环及9环以上的次数
甲
7
1.2
1
乙
7
5.4
3
(2)①∵平均数相同,s<s,
∴甲成绩比乙稳定.
②∵平均数相同,命中9环及9环以上的次数甲比乙少,
∴乙成绩比甲好些.
③∵甲成绩在平均数上下波动,而乙处于上升势头,从第三次以后就没有比甲少的情况发生,
∴乙更有潜力.
- 12 -
展开阅读全文