1、课时素养评价 三 指数函数的性质与图像的应用 (25分钟50分)一、选择题(每小题4分,共16分,多选题全部选对得4分,选对但不全的得2分,有选错的得0分)1.(多选题)关于函数f=的说法中,正确的是()A.偶函数B.奇函数 C.在上是增函数D.在上是减函数【解析】选B、C.f=-=-f,所以函数f为奇函数;当x增大时,ex-e-x增大,故f增大,故函数f为增函数.2.若a1,则函数y=ax与y=(1-a)x2的图像可能是下列四个选项中的()【解析】选C.因为a1,所以函数y=ax在R上单调递增,可排除选项B与D.y=(1-a)x2是开口向下的二次函数,可排除选项A.【加练固】已知函数f(x)
2、=ax在(0,2)内的值域是(a2,1),则函数y=f(x)的图像是()【解析】选A.因为f(x)=ax在(0,2)内的值域是(a2,1),所以f(x)在(0,2)内单调递减.所以0a0,a1)的值域为1,+),则f(-4)与f(1)的大小关系是()A.f(-4)f(1)B.f(-4)=f(1)C.f(-4)0,a1)的值域为1,+),所以a1.由函数f(x)=a|x+1|在(-1,+)上是增函数,且它的图像关于直线x=-1对称,可得函数f(x)在(-,-1)上是减函数.再由f(1)=f(-3),可得f(-4)f(1).二、填空题(每小题4分,共8分)5.(2019马鞍山高一检测)若函数y=a
3、x-m+n-3(a0且a1)的图像恒过定点(3,2),则m+n=_.【解析】因为对于函数y=ax-m+n-3(a0且a1)的图像恒过定点,令x-m=0,可得x=m,y=n-2,可得函数的图像经过定点(m,n-2).再根据函数的图像恒过定点(3,2),所以m=3,n-2=2,解得m=3,n=4,则m+n=7.答案:76.若函数y=在区间(-,3)上单调递增,则实数a的取值范围是_.若在区间上不单调,则实数a的取值范围是_.【解析】y=在(-,3)上递增,即二次函数y=-x2+ax-1在(-,3)上递增,因此需要对称轴x=3,解得a6.若函数在上不单调,则-11,解得-2a2.答案:a6-2a2三
4、、解答题(共26分)7.(12分)函数f(x)=.(1)求f(x)的单调增区间.(2)x-1,2时,求f(x)的值域.【解析】(1)令t=x2-2x,则f(x)=h(t)=,因为h(t)=在定义域内单调递减,t=x2-2x在(-,1单调递减,在1,+)单调递增,所以f(x)的单调递增区间为(-,1.(2)由t=x2-2x,则f(x)=h(t)=因为-1x2,所以t-1,3,所以f(x).8.(14分)设函数f(x)=,a是不为零的常数.(1)若f(3)=,求使f(x)4的x值的取值范围.(2)当x-1,2时,f(x)的最大值是16,求a的值.【解析】(1)由f(3)=,即=,所以10-3a=1
5、,解得a=3.由f(x)=4=,即10-3x-2,解得x4.(2)当a0时,函数f(x)=在x-1,2时为增函数,则x=2时,函数取最大值=16,即10-2a=-4,解得a=7,当a0且a1时,函数f (x)=a x-2-3必过定点()A.(0,-3)B.(2,-2)C.(2,-3)D.(0,1)【解析】选B.因为a0=1,故f(2)=-2,所以函数f (x)=ax-2-3必过定点(2,-2).2.(4分)(2019昆明高一检测)已知函数f(x)=若f(a-1)f(-a),则实数a的取值范围是()A.B.C.D.【解析】选A.当x0时,f(x)=e-x是减函数,且f(x)1,当x0时,f(x)
6、=-x2-2x+1的对称轴为x=-1,抛物线开口向下,此时f(x)在(0,+)上是减函数且f(x)1,则x0的取值范围是_.【解析】f=24-1=15;由题意得或由得x01,综上所述,x0的范围是(-,0)(1,+).答案:15(-,0)(1,+)4.(4分)若函数y=0.5|1-x|+m的图像与x轴有公共点,则m的取值范围是_.【解析】因为函数y=0.5|1-x|+m的图像与x轴有公共点,所以就是求函数m=-0.5|1-x|的值域问题.所以m=-0.5|1-x|的值域为-1,0).故实数m的取值范围是-1,0).答案:-1,0)5.(14分)已知函数y=ax(a0且a1)在1,2上的最大值与
7、最小值之和为20,记f(x)=.(1)求a的值.(2)证明f(x)+f(1-x)=1.【解析】(1)因为函数y=ax(a0且a1)在1,2上的最大值与最小值之和为20,而函数y=ax(a0且a1)在1,2上单调递增或单调递减,所以a+a2=20,得a=4,或a=-5(舍去),所以a=4.(2)因为f(x)=,所以f(x)+f(1-x)=+=+=+=+=1.1.(2019济南高一检测)若ea+be-b+-a,则有()A.a+b0B.a-b0C.a-b0D.a+b0【解析】选D.方法一:取特殊值排除,当a=0,b=1时,1+1,成立,排除A,B.当a=1,b=0,e+11+成立,排除C.方法二:构
8、造函数利用单调性:令f(x)=ex-x,则f(x)是增函数,因为ea-a e-b-b,所以f(a)f(-b),即a+b0.2.定义在D上的函数f(x),如果满足:对任意xD,存在常数M0,都有|f(x)|M成立,则称f(x)是D上的有界函数,其中M称为函数f(x)的上界.已知函数f(x)=1+a+.(1)当a=1时,求函数f(x)在(-,0)上的值域,并判断函数f(x)在(-,0)上是否为有界函数,请说明理由.(2)若函数f(x)在0,+)上是以3为上界的有界函数,求实数a的最大值.【解析】(1)当a=1时,f(x)=1+.令t=,由x1,f(x)=h(t)=t2+t+1=+,因为h(t)在(1,+)上单调递增,故f(t)f(1)=3,故不存在常数M0,使|f(x)|M恒成立,故函数f(x)在(-,0)上不是有界函数.(2)若函数f(x)在0,+)上是以3为上界的有界函数,则当x0时,|f(x)|3恒成立.故有-3f(x)3,即-4-a2-,所以a.所以a的最大值为函数y=22x-的最小值,因为函数y=22x-在0,+)上是增函数,所以ymin=220-=2-1=1,故a的最大值为1.- 8 -