资源描述
第1课时 平面向量的分解及加、减、数乘运算的坐标表示
[A 基础达标]
1.设i,j是平面直角坐标系内分别与x轴,y轴正方向相同的两个单位向量,O为坐标原点,若=4i+2j,=3i+4j,则2+的坐标是( )
A.(1,-2) B.(7,6)
C.(5,0) D.(11,8)
解析:选D.因为=(4,2),=(3,4),
所以2+=(8,4)+(3,4)=(11,8).
2.设向量a=(1,2),b=(-3,5),c=(4,x),若a+b=λc(λ∈R),则λ+x的值为( )
A.- B.
C.- D.
解析:选C.由已知,可得(1,2)+(-3,5)=λ(4,x),所以解得所以λ+x=-,故选C.
3.已知=(-2,4),=(2,6),则等于( )
A.(0,5) B.(0,1)
C.(2,5) D.(2,1)
解析:选D.=(-)=(2,6)-(-2,4)=(2,1).
4.已知四边形ABCD的三个顶点A(0,2),B(-1,-2),C(3,1),且=2,则顶点D的坐标为( )
A. B.
C.(3,2) D.(1,3)
解析:选A.设点D(m,n),则由题意得(4,3)=2(m,n-2)=(2m,2n-4),故
解得即点D的坐标为,故选A.
5.已知A(-3,0),B(0,2),O为坐标原点,点C在∠AOB内,且∠AOC=45°,设=λ+(1-λ)(λ∈R),则λ的值为( )
A. B.
C. D.
解析: 选C.如图所示,因为∠AOC=45°,
所以设C(x,-x),
则=(x,-x).
又因为A(-3,0),B(0,2),
所以λ+(1-λ)
=(-3λ,2-2λ),
所以⇒λ=.
6.已知点A(-1,-5)和向量a=(2,3),若=3a,则点B的坐标为________.
解析:设O为坐标原点,因为=(-1,-5),=3a=(6,9),故=+=(5,4),故点B的坐标为(5,4).
答案:(5,4)
7.已知向量a=(1,2),b=(-2,3),c=(4,1),若用a和b表示c,则c=________.
解析:设c=xa+yb,
则(x,2x)+(-2y,3y)=(x-2y,2x+3y)=(4,1).
故解得
所以c=2a-b.
答案:2a-b
8.已知A(-1,2),B(2,8).若=,=-,则的坐标为________.
解析:==(3,6)=(1,2),
=-=-(3,6)=(-2,-4),
=+=(-1,-2),
所以=(1,2).
答案:(1,2)
9.已知A(-2,4),B(3,-1),C(-3,-4).设=a,=b,=c.
(1)求3a+b-3c;
(2)求满足a=mb+nc的实数m,n的值.
解:由已知得a=(5,-5),b=(-6,-3),c=(1,8).
(1)3a+b-3c=3(5,-5)+(-6,-3)-3(1,8)=(15-6-3,-15-3-24)=(6,-42).
(2)因为mb+nc=(-6m+n,-3m+8n),
所以解得
10.已知向量=(4,3),=(-3,-1),点A(-1,-2).
(1)求线段BD的中点M的坐标;
(2)若点P(2,y)满足=λ(λ∈R),求λ与y的值.
解:(1)设B(x1,y1),
因为=(4,3),A(-1,-2),
所以(x1+1,y1+2)=(4,3),
所以
所以
所以B(3,1).
同理可得D(-4,-3),
设BD的中点M(x2,y2),
则x2==-,y2==-1.
所以M.
(2)由=(3,1)-(2,y)=(1,1-y),
=(-4,-3)-(3,1)=(-7,-4),
又=λ(λ∈R),
所以(1,1-y)=λ(-7,-4)=(-7λ,-4λ),
所以
所以
[B 能力提升]
11.对于向量m=(x1,y1),n=(x2,y2),定义mn=(x1x2,y1y2).已知a=(2,-4),且a+b=ab,那么向量b等于( )
A. B.
C. D.
解析:选A.设b=(x,y),由新定义及a+b=ab,可得(2+x,y-4)=(2x,-4y),所以2+x=2x,y-4=-4y,解得x=2,y=,所以向量b=.
12.已知A(-3,0),B(0,2),O为坐标原点,点C在∠AOB内,|OC|=2,且∠AOC=,设=λ+(λ∈R),则λ=______.
解析:过C作CE⊥x轴于点E,由∠AOC=知,|OE|=|CE|=2,所以=+=λ+,即=λ,所以(-2,0)=λ(-3,0),故λ=.
答案:
13.在△ABC中,点P在BC上,且=2,点Q是AC的中点,若=(4,3),=(1,5),则=________.
解析:-==(1,5)-(4,3)=(-3,2),因为点Q是AC的中点,所以=,所以=+=(1,5)+(-3,2)=(-2,7).因为=2,所以=+=3=3(-2,7)=(-6,21).
答案:(-6,21)
14.已知O是△ABC内一点,∠AOB=150°,∠BOC=90°,设=a,=b,=c,且|a|=2,|b|=1,|c|=3,试用a,b表示c.
解:如图,以O为原点,向量所在的直线为x轴建立平面直角坐标系.
因为|a|=2,所以a=(2,0).
设b=(x1,y1),所以x1=|b|·cos 150°=1×=-,
y1=|b|sin 150°=1×=,
所以b=.同理可得c=.
设c=λ1a+λ2b(λ1,λ2∈R),
所以=λ1(2,0)+λ2
=(2λ1-λ2,λ2),
所以解得
所以c=-3a-3b.
[C 拓展探究]
15.在平面直角坐标系xOy中,已知点A(1,1),B(2,3),C(3,2).
(1)若++=0,求的坐标;
(2)若=m+n(m,n∈R),且点P在函数y=x+1的图象上,试求m-n的值.
解:(1)设点P的坐标为(x,y),因为++=0,
又++=(1-x,1-y)+(2-x,3-y)+(3-x,2-y)=(6-3x,6-3y).
所以解得
所以点P的坐标为(2,2),
故=(2,2).
(2)设点P的坐标为(x0,y0),
因为A(1,1),B(2,3),C(3,2).
所以=(2,3)-(1,1)=(1,2),
=(3,2)-(1,1)=(2,1),
因为=m+n,
所以(x0,y0)=m(1,2)+n(2,1)=(m+2n,2m+n),
所以
两式相减得m-n=y0-x0,
又因为点P在函数y=x+1的图象上,
所以y0-x0=1,所以m-n=1.
- 6 -
展开阅读全文