资源描述
2021-2022高考数学模拟试卷含解析
注意事项:
1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知向量,,且与的夹角为,则( )
A. B.1 C.或1 D.或9
2.已知函数,若恒成立,则满足条件的的个数为( )
A.0 B.1 C.2 D.3
3.若向量,则( )
A.30 B.31 C.32 D.33
4.已知椭圆内有一条以点为中点的弦,则直线的方程为( )
A. B.
C. D.
5.函数在的图像大致为
A. B. C. D.
6.已知集合,集合,则等于( )
A. B.
C. D.
7.已知全集,集合,,则阴影部分表示的集合是( )
A. B. C. D.
8.若函数,在区间上任取三个实数,,均存在以,,为边长的三角形,则实数的取值范围是( )
A. B. C. D.
9.已知双曲线的焦距为,过左焦点作斜率为1的直线交双曲线的右支于点,若线段的中点在圆上,则该双曲线的离心率为( )
A. B. C. D.
10.若的展开式中的系数为150,则( )
A.20 B.15 C.10 D.25
11.已知四棱锥的底面为矩形,底面,点在线段上,以为直径的圆过点.若,则的面积的最小值为( )
A.9 B.7 C. D.
12.某工厂一年中各月份的收入、支出情况的统计如图所示,下列说法中错误的是( ).
A.收入最高值与收入最低值的比是
B.结余最高的月份是月份
C.与月份的收入的变化率与至月份的收入的变化率相同
D.前个月的平均收入为万元
二、填空题:本题共4小题,每小题5分,共20分。
13.为了了解一批产品的长度(单位:毫米)情况,现抽取容量为400的样本进行检测,如图是检测结果的频率分布直方图,根据产品标准,单件产品长度在区间的一等品,在区间和的为二等品,其余均为三等品,则样本中三等品的件数为__________.
14.在中,角的对边分别为,且.若为钝角,,则的面积为____________.
15.已知(为虚数单位),则复数________.
16.如图,半圆的直径AB=6,O为圆心,C为半圆上不同于A、B的任意一点,若P为半径OC上的动点,则的最小值为 .
三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。
17.(12分)已知函数,其中.
(Ⅰ)若,求函数的单调区间;
(Ⅱ)设.若在上恒成立,求实数的最大值.
18.(12分)在中,角、、的对边分别为、、,且.
(1)若,,求的值;
(2)若,求的值.
19.(12分)设点,动圆经过点且和直线相切.记动圆的圆心的轨迹为曲线.
(1)求曲线的方程;
(2)过点的直线与曲线交于、两点,且直线与轴交于点,设,,求证:为定值.
20.(12分)设函数.
(1)当时,求不等式的解集;
(2)若恒成立,求的取值范围.
21.(12分)在四边形中,,;如图,将沿边折起,连结,使,求证:
(1)平面平面;
(2)若为棱上一点,且与平面所成角的正弦值为,求二面角的大小.
22.(10分)如图,椭圆的左、右顶点分别为,,上、下顶点分别为,,且,为等边三角形,过点的直线与椭圆在轴右侧的部分交于、两点.
(1)求椭圆的标准方程;
(2)求四边形面积的取值范围.
参考答案
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1.C
【解析】
由题意利用两个向量的数量积的定义和公式,求的值.
【详解】
解:由题意可得,
求得,或,
故选:C.
【点睛】
本题主要考查两个向量的数量积的定义和公式,属于基础题.
2.C
【解析】
由不等式恒成立问题分类讨论:①当,②当,③当,考查方程的解的个数,综合①②③得解.
【详解】
①当时,,满足题意,
②当时,,,,,故不恒成立,
③当时,设,,
令,得,,得,
下面考查方程的解的个数,
设(a),则(a)
由导数的应用可得:
(a)在为减函数,在,为增函数,
则(a),
即有一解,
又,均为增函数,
所以存在1个使得成立,
综合①②③得:满足条件的的个数是2个,
故选:.
【点睛】
本题考查了不等式恒成立问题及利用导数研究函数的解得个数,重点考查了分类讨论的数学思想方法,属难度较大的题型.
3.C
【解析】
先求出,再与相乘即可求出答案.
【详解】
因为,所以.
故选:C.
【点睛】
本题考查了平面向量的坐标运算,考查了学生的计算能力,属于基础题.
4.C
【解析】
设,,则,,相减得到,解得答案.
【详解】
设,,设直线斜率为,则,,
相减得到:,的中点为,
即,故,直线的方程为:.
故选:.
【点睛】
本题考查了椭圆内点差法求直线方程,意在考查学生的计算能力和应用能力.
5.B
【解析】
由分子、分母的奇偶性,易于确定函数为奇函数,由的近似值即可得出结果.
【详解】
设,则,所以是奇函数,图象关于原点成中心对称,排除选项C.又排除选项D;,排除选项A,故选B.
【点睛】
本题通过判断函数的奇偶性,缩小考察范围,通过计算特殊函数值,最后做出选择.本题较易,注重了基础知识、基本计算能力的考查.
6.B
【解析】
求出中不等式的解集确定出集合,之后求得.
【详解】
由,
所以,
故选:B.
【点睛】
该题考查的是有关集合的运算的问题,涉及到的知识点有一元二次不等式的解法,集合的运算,属于基础题目.
7.D
【解析】
先求出集合N的补集,再求出集合M与的交集,即为所求阴影部分表示的集合.
【详解】
由,,可得或,
又
所以.
故选:D.
【点睛】
本题考查了韦恩图表示集合,集合的交集和补集的运算,属于基础题.
8.D
【解析】
利用导数求得在区间上的最大值和最小,根据三角形两边的和大于第三边列不等式,由此求得的取值范围.
【详解】
的定义域为,,
所以在上递减,在上递增,在处取得极小值也即是最小值,,,,,
所以在区间上的最大值为.
要使在区间上任取三个实数,,均存在以,,为边长的三角形,
则需恒成立,且,
也即,也即当、时,成立,
即,且,解得.所以的取值范围是.
故选:D
【点睛】
本小题主要考查利用导数研究函数的最值,考查恒成立问题的求解,属于中档题.
9.C
【解析】
设线段的中点为,判断出点的位置,结合双曲线的定义,求得双曲线的离心率.
【详解】
设线段的中点为,由于直线的斜率是,而圆,所以.由于是线段的中点,所以,而,根据双曲线的定义可知,即,即.
故选:C
【点睛】
本小题主要考查双曲线的定义和离心率的求法,考查直线和圆的位置关系,考查数形结合的数学思想方法,属于中档题.
10.C
【解析】
通过二项式展开式的通项分析得到,即得解.
【详解】
由已知得,
故当时,,
于是有,
则.
故选:C
【点睛】
本题主要考查二项式展开式的通项和系数问题,意在考查学生对这些知识的理解掌握水平.
11.C
【解析】
根据线面垂直的性质以及线面垂直的判定,根据勾股定理,得到之间的等量关系,再用表示出的面积,利用均值不等式即可容易求得.
【详解】
设,,则.
因为平面,平面,所以.
又,,所以平面,则.
易知,.
在中,,
即,化简得.
在中,,.
所以.
因为,
当且仅当,时等号成立,所以.
故选:C.
【点睛】
本题考查空间几何体的线面位置关系及基本不等式的应用,考查空间想象能力以及数形结合思想,涉及线面垂直的判定和性质,属中档题.
12.D
【解析】
由图可知,收入最高值为万元,收入最低值为万元,其比是,故项正确;
结余最高为月份,为,故项正确;
至月份的收入的变化率为至月份的收入的变化率相同,故项正确;
前个月的平均收入为万元,故项错误.
综上,故选.
二、填空题:本题共4小题,每小题5分,共20分。
13.100.
【解析】
分析:根据频率分布直方图得到三等品的频率,然后可求得样本中三等品的件数.
详解:由题意得,三等品的长度在区间,和内,
根据频率分布直方图可得三等品的频率为,
∴样本中三等品的件数为.
点睛:频率分布直方图的纵坐标为,因此每一个小矩形的面积表示样本个体落在该区间内的频率,把小矩形的高视为频率时常犯的错误.
14.
【解析】
转化为,利用二倍角公式可求解得,结合余弦定理可得b,再利用面积公式可得解.
【详解】
因为,
所以.
又因为,且为锐角,
所以.
由余弦定理得,
即,解得,
所以
故答案为:
【点睛】
本题考查了正弦定理和余弦定理的综合应用,考查了学生综合分析,转化划归,数学运算的能力,属于中档题.
15.
【解析】
解:
故答案为:
【点睛】
本题考查复数代数形式的乘除运算,属于基础题.
16..
【解析】
.
三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。
17.(Ⅰ)单调递减区间为,单调递增区间为;(Ⅱ).
【解析】
(Ⅰ)求出函数的定义域以及导数,利用导数可求出该函数的单调递增区间和单调递减区间;
(Ⅱ)由题意可知在上恒成立,分和两种情况讨论,在时,构造函数,利用导数证明出在上恒成立;在时,经过分析得出,然后构造函数,利用导数证明出在上恒成立,由此得出,进而可得出实数的最大值.
【详解】
(Ⅰ)函数的定义域为.
当时,.
令,解得(舍去),.
当时,,所以,函数在上单调递减;
当时,,所以,函数在上单调递增.
因此,函数的单调递减区间为,单调递增区间为;
(Ⅱ)由题意,可知在上恒成立.
(i)若,,,
,
构造函数,,则,
,,.
又,在上恒成立.
所以,函数在上单调递增,
当时,在上恒成立.
(ii)若,构造函数,.
,所以,函数在上单调递增.
恒成立,即,,即.
由题意,知在上恒成立.
在上恒成立.
由(Ⅰ)可知,
又,当,即时,函数在上单调递减,
,不合题意,,即.
此时
构造函数,.
,
,,
,
恒成立,所以,函数在上单调递增,恒成立.
综上,实数的最大值为
【点睛】
本题考查利用导数求解函数的单调区间,同时也考查了利用导数研究函数不等式恒成立问题,本题的难点在于不断构造新函数来求解,考查推理能力与运算求解能力,属于难题.
18.(1);(2).
【解析】
(1)利用余弦定理得出关于的二次方程,结合,可求出的值;
(2)利用两角和的余弦公式以及诱导公式可求出的值,利用同角三角函数的基本关系求出的值,然后利用二倍角的正切公式可求出的值.
【详解】
(1)在中,由余弦定理得,
,即,
解得或(舍),所以;
(2)由及得,,
所以,
又因为,所以,
从而,所以.
【点睛】
本题考查利用余弦定理解三角形,同时也考查了两角和的余弦公式、同角三角函数的基本关系以及二倍角公式求值,考查计算能力,属于中等题.
19.(1);(2)见解析.
【解析】
(1)已知点轨迹是以为焦点,直线为准线的抛物线,由此可得曲线的方程;
(2)设直线方程为,,则,设,由直线方程与抛物线方程联立消元应用韦达定理得,,由,,用横坐标表示出,然后计算,并代入,可得结论.
【详解】
(1)设动圆圆心,由抛物线定义知:点轨迹是以为焦点,直线为准线的抛物线,设其方程为,则,解得.
∴曲线的方程为;
(2)证明:设直线方程为,,则,设,
由得,①,
则,,②,
由,,得
,,
整理得,,
∴,代入②得:
.
【点睛】
本题考查求曲线方程,考查抛物线的定义,考查直线与抛物线相交问题中的定值问题.解题方法是设而不求的思想方法,即设交点坐标,设直线方程,直线方程代入抛物线(或圆锥曲线)方程得一元二次方程,应用韦达定理得,,代入题中其他条件所求式子中化简变形.
20. (1);(2) .
【解析】
分析:(1)先根据绝对值几何意义将不等式化为三个不等式组,分别求解,最后求并集,(2)先化简不等式为,再根据绝对值三角不等式得最小值,最后解不等式得的取值范围.
详解:(1)当时,
可得的解集为.
(2)等价于.
而,且当时等号成立.故等价于.
由可得或,所以的取值范围是.
点睛:含绝对值不等式的解法有两个基本方法,一是运用零点分区间讨论,二是利用绝对值的几何意义求解.法一是运用分类讨论思想,法二是运用数形结合思想,将绝对值不等式与函数以及不等式恒成立交汇、渗透,解题时强化函数、数形结合与转化化归思想方法的灵活应用,这是命题的新动向.
21.(1)证明见详解;(2)
【解析】
(1)由题可知,等腰直角三角形与等边三角形,在其公共边AC上取中点O,连接、,可得,可求出.在中,由勾股定理可证得,结合,可证明平面.再根据面面垂直的判定定理,可证平面平面.
(2)以为坐标原点,建立如图所示的空间直角坐标系,由点F在线段上,设,得出的坐标,进而求出平面的一个法向量.用向量法表示出与平面所成角的正弦值,由其等于,解得.再结合为平面的一个法向量,用向量法即可求出与的夹角,结合图形,写出二面角的大小.
【详解】
证明:(1)在中,
为正三角形,且
在中,
为等腰直角三角形,且
取的中点,连接
,
,
,平面
平面
平面
..平面平面
(2)以为坐标原点,建立如图所示的空间直角坐标系,则
,
,
,
设.则
设平面的一个法向量为.则
,
令,解得
与平面所成角的正弦值为,
整理得
解得或(含去)
又为平面的一个法向量
,
二面角的大小为.
【点睛】
本题考查了线面垂直的判定,面面垂直的判定,向量法解决线面角、二面角的问题,属于中档题.
22.(1);(2).
【解析】
(1)根据坐标和为等边三角形可得,进而得到椭圆方程;
(2)①当直线斜率不存在时,易求坐标,从而得到所求面积;②当直线的斜率存在时,设方程为,与椭圆方程联立得到韦达定理的形式,并确定的取值范围;利用,代入韦达定理的结论可求得关于的表达式,采用换元法将问题转化为,的值域的求解问题,结合函数单调性可求得值域;结合两种情况的结论可得最终结果.
【详解】
(1),,
为等边三角形,,椭圆的标准方程为.
(2)设四边形的面积为.
①当直线的斜率不存在时,可得,,
.
②当直线的斜率存在时,设直线的方程为,
设,,
联立得:,
,,.
,,,,
面积.
令,则,,
令,则,,
在定义域内单调递减,.
综上所述:四边形面积的取值范围是.
【点睛】
本题考查直线与椭圆的综合应用问题,涉及到椭圆方程的求解、椭圆中的四边形面积的取值范围的求解问题;关键是能够将所求面积表示为关于某一变量的函数,将问题转化为函数值域的求解问题.
展开阅读全文