资源描述
北师大版七年级数学上册同步试卷word可编辑
(考试时间:120分钟,总分100分)
班级:__________ 姓名:__________ 分数:__________
一、单选题(每小题2分,共计30分)
1、从下列物体抽象出来的几何图形可以看成圆柱的是( )
A . B . C . D .
2、下面图形中,以直线为轴旋转一周,可以得到圆柱体的是( )
A . B . C . D .
3、下边的立体图形是由哪个平面图形绕轴旋转一周得到的( )
A . B . C . D .
4、从棱长为2的正方体毛坯的一角,挖去一个棱长为1的小正方体,得到一个如图5所示的零件,则这个零件的表面积是( )
A .20 B .22 C .24 D .26
5、图中的几何体是由哪个图形绕虚线旋转一周得到的( )
A . B . C . D .
6、沿图中虚线旋转一周,能围成的几何体是( )
A . B . C . D .
7、如图是一个几何体的三视图,根据图中提供的数据,计算这个几何体的表面积是( )
A . B . C . D .
8、如图是某几何体的三视图及相关数据,则该几何体的表面积是( )
A . B . C . D .
9、如图,含有曲面的几何体编号是( )
A .①②③ B .②③④ C .①④⑤ D .②③
10、与易拉罐类似的几何体是( )
A .圆锥 B .圆柱 C .棱锥 D .棱柱
11、下列图形中,不属于立体图形的是( )
A . B . C . D .
12、如图,下面的几何体,可以由下列选项中的哪个图形绕虚线旋转一周后得到( )
A . B . C . D .
13、如图,一个正方体的六个面上分别标有数字1,2,3,4,5,6.根据图中三种状态所显示的数字,正方体的正面“?”表示的数字是( )
A .1 B .2 C .3 D .6
14、某几何体的三视图如图所示;则该几何体的表面积为( )
A .6 +6+2 B .18+2 C .3 D .6
15、电视剧《西游记》中,孙悟空的“金箍棒”飞速旋转,形成一个圆面,是属于( )
A .点动成线 B .线动成面 C .面动成体 D .以上都不对
二、填空题(每小题4分,共计20分)
1、将四个棱长为1厘米的小正方体拼成一个大长方体,大长方体的表面积可以是 平方厘米.
2、一只小蚂蚁从如图所示的正方体的顶点A沿着棱爬向有蜜糖的点B,它只能经过三条棱,请你数一数,小蚂蚁有 种爬行路线.
3、一个几何体的三视图如图所示,其中从上面看的视图是一个等边三角形,则这个几何体的表面积为 .
4、一个正方体的表面积是24㎡,那么这个正方体的所有棱长之和是 .
5、将一枚硬币立在桌面上,当用力一转时,它形成的是一个 体,说明的数学道理是 .
三、判断题(每小题2分,共计6分)
1、棱柱侧面的形状可能是一个三角形。( )
2、体是由面围成的( )
四、计算题(每小题4分,共计12分)
1、我们知道,长方形绕着它的一边旋转形成圆柱体,圆柱体的侧面展开图为长方形,现将一个长、宽分别为4cm和3cm的长方形绕着它的宽旋转一周,求形成的圆柱体的表面积.
2、一个长方形的两边分别是2cm、3cm,若将这个长方形绕一边所在直线旋转一周后是一个什么几何体?请求出这个几何体的底面积和侧面积.
3、已知有一个长为5cm,宽为3cm的长方形,若以这个长方形的一边所在的直线为轴,将它旋转一周,你能求出所得的几何体的表面积吗?
五、解答题(每小题4分,共计32分)
1、如图,是一个正六棱柱,它的底面边长是3cm,高是6cm.
(1)这个棱柱的侧面积是多少?
(2)这个棱柱共有多少条棱?所有的棱长的和是多少?
(3)这个棱柱共有多少个顶点?
(4)通过观察,试用含n的式子表示n棱柱的面数与棱的条数.
2、已知一个长方体的长为4cm,宽为3cm,高为5cm,请求出:
(1)长方体所有棱长的和.
(2)长方体的表面积.
3、如图,是一个几何体从正面、左面、上面看得到的平面图形,判断下面说法的正误(正确的在括号内划△,错误的在括号内划▲)
(1)这是一个棱锥 .
(2)这个几何体有4个面 .
(3)这个几何体有5个顶点 .
(4)这个几何体有8条棱 .
(5)请你再说出一个正确的结论 .
4、分别用一张边长为5cm的正方形和一张长6cm、宽4cm的长方形硬纸片旋转一周得到两个圆柱.哪个圆柱的体积更大?
5、探究:有一弦长6cm,宽4cm的矩形纸板,现要求以其一组对边为点所在直线为轴,旋转180°,得到一个圆柱,现可按照两种方案进行操作:
方案一:以较长的一组对边中点所在直线为轴旋转,如图①;
方案二:以较短的一组对边中点所在直线为轴旋转,如图②.
(1)请通过计算说明哪种方法构造的圆柱体积大;
(2)如果该矩形的长宽分别是5cm和3cm呢?请通过计算说明哪种方法构造的圆柱体积大;
(3)通过以上探究,你发现对于同一个矩形(不包括正方形),以其一组对边中点所在直线为轴旋转得到一个圆柱,怎样操作所得到的圆柱体积大(不必说明原因)?
6、如图,右图是左图表面的展开图,右图已有两个面标出是长方体的下面和右面,请你在右图中把长方体的其他面标出来.
7、把一张边长为40 cm的正方形硬纸板,进行适当的裁剪,折成一个长方体盒子(纸板的厚度忽略不计).
(1)如图,若在正方形硬纸板的四角各剪掉一个同样大小的正方形,将剩余部分折成一个无盖的长方体盒子.
①要使折成的长方体盒子的底面积为484 cm2 , 那么剪掉的正方形的边长为多少?
②折成的长方体盒子的侧面积是否有最大值?如果有,求出这个最大值和此时剪掉的正方形的边长;如果没有,说明理由.
(2)若在正方形硬纸板的四周剪掉一些矩形(即剪掉的矩形至少有一条边在正方形硬纸板的边上),将剩余部分折成一个有盖的长方体盒子.若折成的一个长方体盒子的表面积为550 cm2 , 求此时长方体盒子的长、宽、高(只需求出符合要求的一种情况).
8、把19个边长为2cm的正方体重叠起来,作成如图那样的立体图形,求这个立体图形的表面积.
展开阅读全文