资源描述
七年级数学上册1.1生活中的图形期中试卷【可打印】
(考试时间:120分钟,总分100分)
班级:__________ 姓名:__________ 分数:__________
一、单选题(每小题2分,共计34分)
1、下面几种图形:①三角形,②长方形,③立方体,④圆,⑤圆锥,⑥圆柱.其中属于立体图形的有( )
A .1个 B .2个 C .3个 D .4个
2、如图所示的沙漏,可以看作是由下列所给的哪个平面图形绕虚线旋转一周而成的( )
A . B . C . D .
3、把立方体的六个面分别涂上六种不同的颜色,并画出朵数不等的花,各面上的颜色与花朵的朵数情况列表如下:现将上述大小相同,颜色、花朵分布完全样的四个立方体拼成一个水平放置的长方体,如图所示,那么长方体的下底面共有花朵数是( )
颜色
红
黄
蓝
白
紫
绿
花朵数
1
2
3
4
5
6
A .11 B .13 C .15 D .17
4、下列几何体,都是由平面围成的是( )
A .圆柱 B .三棱柱 C .圆锥 D .球
5、从下列物体抽象出来的几何图形可以看成圆柱的是( )
A . B . C . D .
6、如图,含有曲面的几何体编号是( )
A .①②③ B .②③④ C .①④⑤ D .②③
7、沿图中虚线旋转一周,能围成的几何体是( )
A . B . C . D .
8、十个棱长为 的正方体摆放成如图的形状,这个图形的表面积是( )
A . B . C . D .
9、下列立体图形含有曲面的是( )
A . B . C . D .
10、如图是一个几何体的三视图,根据图中提供的数据,计算这个几何体的表面积是( )
A . B . C . D .
11、在下列几何体中,( ) 几何体是将一个三角尺绕它的斜边所在直线旋转一周得到的
A . B .
C . D .
12、下列图形属于平面图形的是( )
A .立方体 B .球 C .圆柱 D .三角形
13、如图所示,沿图中虚线旋转一周,能围成的几何体是下面几何体中的 ( )
A . B . C . D .
14、小欣同学用纸(如图)折成了个正方体的盒子,里面放了一瓶墨水,混放在下面的盒子里,只凭观察,选出墨水在哪个盒子中( )
A . B . C . D .
15、如图所示,是由8个完全相同的小正方体搭成的几何体.若小正方体的棱长为1,则该几何体的表面积是( )
A .16 B .30 C .32 D .34
16、将如图所示的Rt△ACB绕直角边AC旋转一周,所得几何体的主视图(正视图)是( )
A . B . C . D .
17、如图,将一个直角三角形绕它的一条直角边所在的直线旋转一周,得到的几何体是( )
A .长方体 B .球 C .圆柱 D .圆锥
二、填空题(每小题2分,共计40分)
1、一个正方体的表面积是24㎡,那么这个正方体的所有棱长之和是 .
2、在乒乓球、足球、羽毛球、六角螺母中,形状类似球体的有 .
3、一个正方体有 个面.
4、一个正方体的棱长2×102毫米,则它的表面积是 .体积是 .
5、若一个棱柱有7个面,则它是 棱柱.
6、如图,一个正方体形状的木块,棱长为2米,若沿正方体的三个方向分别锯成3份、4份和5份,得到若干个大大小小的长方体木块,则所有这些长方体木块的表面积和是 平方米.
7、圆锥由 面组成的,圆锥的侧面展开图是 ;
8、如图所示,一个长方体的长为4cm,宽为3cm,高为5cm.则长方体所有棱长的和为 ;长方体的表面积为 .
9、如图,在棱长分别为 、 、 的长方体中截掉一个棱长为 的正方体,则剩余几何体的表面积为 .
10、用10个棱长为acm的正方体摆放成如图的形状,像这样向下逐层累加摆放总共10层,其表面积是 .
11、用棱长为1cm的小正方体,搭成如图所示的几何体,则它的表面积为 cm2.
12、如图,在棱长分别为 、 、 的长方体中截掉一个棱长为 的正方体,则剩余几何体的表面积为 .
13、由5个棱长为1的小正方形组成的几何体如图放置,一面着地,两面靠墙,如果要将露出来的部分涂色,则涂色部分的面积为 .
14、在长方体、圆柱、圆锥、球中,三视图均一样的几何体是 。
15、从棱长为2cm的正方体毛坯的一角,挖去一个棱长为1cm的小正方体,得到一个如图所示的零件,则这个零件的表面积是 cm2。
16、薄薄的硬币在桌面上转动时,看上去像球,这说明了 .
17、如图是按1:10的比例画出的一个几何体的三视图,则该几何体的侧面积是 .
18、一个正方体的六个面分别标有数字1、2、3、4、5、6,在桌子上翻动这个正方体,根据图中给出的三种情况,可知数字2的对面是数字 .
19、如图所示为8个立体图形.
其中,柱体的序号为 ,锥体的序号为 ,有曲面的序号为 .
20、如图,由几个边长为1的小立方体所组成的几何体,从上面看到的形状图如图所示,小正方形中的数字表示在该位置的小正方体的个数,则这个几何体的表面积为 .
三、计算题(每小题2分,共计6分)
1、有一个长方形绕它的一边所在的直线旋转一周,得到的几何体是圆柱.现在有一个长为6cm,宽为5cm的长方形,分别绕它的长、宽所在直线旋转一周,得到不同的圆柱,它们的体积分别是多大?
2、我们知道,长方形绕着它的一边旋转形成圆柱体,圆柱体的侧面展开图为长方形,现将一个长、宽分别为4cm和3cm的长方形绕着它的宽旋转一周,求形成的圆柱体的表面积.
3、一个长方形的两边分别是2cm、3cm,若将这个长方形绕一边所在直线旋转一周后是一个什么几何体?请求出这个几何体的底面积和侧面积.
四、解答题(每小题4分,共计20分)
1、如图,是一个正六棱柱,它的底面边长是3cm,高是6cm.
(1)这个棱柱的侧面积是多少?
(2)这个棱柱共有多少条棱?所有的棱长的和是多少?
(3)这个棱柱共有多少个顶点?
(4)通过观察,试用含n的式子表示n棱柱的面数与棱的条数.
2、如图所示的积木是16块棱长为2cm的正方体堆积而成的,求出它的表面积.
3、将一个正方体木块涂成红色,然后如图把它的棱三等分,再沿等分线把正方体切开,可以得到27个小正方体.观察并回答下列问题:
(1)其中三面涂色的小正方体有 个,两面涂色的小正方体有 个,各面都没有涂色的小正方体有 个;
(2)如果将这个正方体的棱n等分,所得的小正方体中三面涂色的有 个,各面都没有涂色的有 个;
(3)如果要得到各面都没有涂色的小正方体100个,那么至少应该将此正方体的棱 等分.
4、如图,是一个几何体从正面、左面、上面看得到的平面图形,判断下面说法的正误(正确的在括号内划△,错误的在括号内划▲)
(1)这是一个棱锥 .
(2)这个几何体有4个面 .
(3)这个几何体有5个顶点 .
(4)这个几何体有8条棱 .
(5)请你再说出一个正确的结论 .
5、如图,在平整地面上,若干个完全相同的棱长为10cm的小正方体堆成一个几何体.
(1) 这个几何体由个小正方体组成
(2) 在下面网格中画出左视图和俯视图.
(3) 如果在这个几何体的表面(不含底面)喷上黄色的漆,则这个几何体喷漆的面积是多少cm2.
展开阅读全文