1、七年级数学上册1.1生活中的图形达标试卷【可编辑】(考试时间:120分钟,总分100分)班级:_ 姓名:_ 分数:_一、单选题(每小题2分,共计34分)1、如图,将一个直角三角形绕它的一条直角边所在的直线旋转一周,得到的几何体是圆锥,这一现象能用以下哪个数学知识解释( )A .点动成线 B .线动成面 C .面动成体 D .面面相交得线2、下列立体图形含有曲面的是( )A . B . C . D .3、“汽车上雨刷器的运动过程”能说明的数学知识是( )A .点动成线 B .线动成面 C .面动成体 D .面与面交于线4、如图是某几何体的三视图及相关数据,则该几何体的表面积是( )A . B .
2、 C . D .5、下列几何体中,由一个曲面和一个圆围成的几何体是( )A .球 B .圆锥 C .圆柱 D .棱柱6、观察下图,把左边的图形绕着给定的直线旋转一周后,可能形成的立体图形是( )A . B . C . D .7、已知圆锥的底面半径为2cm,母线长为5cm,则圆锥的侧面积是( )A .10 cm2 B .5 cm2 C .10 cm2 D .16 cm28、下列几何体,都是由平面围成的是( )A .圆柱 B .三棱柱 C .圆锥 D .球9、下列几何体中,其主视图是曲线图形的是( )A . B . C . D .10、如图,5个边长为的立方体摆在桌子上,则露在表面的部分的面积为(
3、 )A.13cm B.16cm C.20cm D .23cm11、下列说法不正确的是( )A .四棱柱是长方体 B .八棱柱有10个面C .六棱柱有12个顶点 D .经过棱柱的每个顶点有3条棱12、下列立体图形中,只由一个面围成的是( )A .正方体 B .圆锥 C .圆柱 D .球13、下列几何体中,面的个数最多的是()A . B . C . D .14、将下列平面图形绕轴旋转一周,能得到图中所示立体图形的是( )A . B . C . D .15、如图,一个几何体的三视图分别是两个矩形,一个扇形,则这个几何体表面积的大小为( )A .12 B .15 C .12+6 D .15+1216、
4、某几何体的三视图如图所示;则该几何体的表面积为()A .6+6+2 B .18+2 C .3 D .617、下列图形属于平面图形的是( )A .立方体 B .球 C .圆柱 D .三角形二、填空题(每小题2分,共计40分)1、已知长方形长为5,宽为2,将其绕它的一条边所在的直线旋转一周,得到一个几何体,该几何体的体积为 .(结果保留)2、用10个棱长为acm的正方体摆放成如图的形状,像这样向下逐层累加摆放总共10层,其表面积是 .3、如图是一个长为,宽为的长方形纸片,若将长方形纸片绕长边所在直线旋转一周,得到的几何体的体积为 .(结果保留)4、如图是由若干个棱长为1的小正方体组合而成的一个几何
5、体的三视图,则这个几何体的表面积是 5、如图,正方形ABCD的边长为3cm,以直线AB为轴,将正方形旋转一周,所得几何体的体积为 cm3.(结果保留)6、在朱自清的春中有描写春雨的语句“像牛毛,像细丝,密密地斜织着”这里把雨滴看成了点,请用数学知识解释这一现象 7、一个正方体的木块的体积是,现将它锯成8块同样大小的小正方体木块,则每个小正方体木块的表面积是 .8、汽车的雨刷把玻璃上的雨水刷干净,用数学知识解释为: .9、从棱长为2的正方体毛坯的一角,挖去一个棱长为1的小正方体,得到一个如图所示的零件,则这个零件的表面积为 10、长方体是由 个面围成,圆柱是由 个面围成,圆锥是由 个面围成.11
6、、为了致敬抗疫一线最美逆行者,小明用棱长为1的小立方块粘接成了一个如图所示的几何体从它的每一个面看都有一个穿透的完全相同的“十字孔”(阴影部分),则这个几何体(含内部)的表面积是 。12、圆锥由 面组成的,圆锥的侧面展开图是 ;13、下面的几何体中,属于柱体的有 个14、一个小立方体的六个面分别标有数字1、2. 3、4、5、6,从三个不同的方向看到的情形如图所示,则数字6的对面是 .15、从棱长为4的正方体毛坯的一角,挖去一个棱长为2的小正方体,得到一个如图所示的零件,则这个零件的表面积为 .16、如图,在长方体ABCDEFGH中,与平面ADHE垂直的棱共有 条17、如图,长方形的长为3cm,
7、宽为2cm,以该长方形较短的一边所在直线为轴,将其旋转一周,形成圆柱,其体积为 cm3.(结果保留)18、如图,一个正方体形状的木块,棱长为2米,若沿正方体的三个方向分别锯成3份、4份和5份,得到若干个大大小小的长方体木块,则所有这些长方体木块的表面积和是 平方米19、一个正方体的表面积是24,那么这个正方体的所有棱长之和是 .20、请同学们手拿一枚硬币,将其立在桌面上用力一转,它形成的是一个 体,由此说明 .三、计算题(每小题2分,共计6分)1、已知有一个长为5cm,宽为3cm的长方形,若以这个长方形的一边所在的直线为轴,将它旋转一周,你能求出所得的几何体的表面积吗?2、我们知道,长方形绕着
8、它的一边旋转形成圆柱体,圆柱体的侧面展开图为长方形,现将一个长、宽分别为4cm和3cm的长方形绕着它的宽旋转一周,求形成的圆柱体的表面积3、有一个长方形绕它的一边所在的直线旋转一周,得到的几何体是圆柱现在有一个长为6cm,宽为5cm的长方形,分别绕它的长、宽所在直线旋转一周,得到不同的圆柱,它们的体积分别是多大?四、解答题(每小题4分,共计20分)1、如图1,已知直角三角形两直角边的长分别为3和4,斜边的长为5(1)试计算该直角三角形斜边上的高(2)按如图2、3、4三种情形计算该直角三角形绕某一边旋转得到的立体图形的体积(结果保留)2、有3个棱长分别是3cm,4cm,5cm的正方体组合成如图所示的图形其露在外面的表面积是多少?(整个立体图形摆放在地上)3、将一个半径为2cm的圆分成3个扇形,其圆心角的比1:2:3,求:各个扇形的圆心角的度数其中最大一个扇形的面积4、已知RtABC的斜边AB=13cm,一条直角边AC=5cm,以直线AB为轴旋转一周得一个几何体求这个几何体的表面积5、如图,是一个几何体从正面、左面、上面看得到的平面图形,判断下面说法的正误(正确的在括号内划,错误的在括号内划)(1)这是一个棱锥 (2)这个几何体有4个面 (3)这个几何体有5个顶点 (4)这个几何体有8条棱 (5)请你再说出一个正确的结论