资源描述
七年级数学上册1.1生活中的图形期中试卷(不含答案)
(考试时间:120分钟,总分100分)
班级:__________ 姓名:__________ 分数:__________
一、单选题(每小题2分,共计34分)
1、一位雕塑家利用15个棱长为1米的相同正方体,在公园空地设计了一个如图所示的几何体造型,需要把露出的表面都涂上颜色,则需要涂颜色部分的面积为( )
A .46米2 B .37米2 C .28米2 D .25米2
2、如图是一个由平面图形绕虚线旋转得到的立体图形,则这个平面图形是( )
A . B . C . D .
3、圆柱是由长方形绕着它的一边所在直线旋转一周所得到的,那么下列四个选项绕直线旋转一周可以得到如图立体图形的是( )
A . B . C . D .
4、下列几何体中,其主视图是曲线图形的是( )
A . B . C . D .
5、下列几何体中,属于柱体的有( )
A .1个 B .2个 C .3个 D .4个
6、如图,含有曲面的几何体编号是( )
A .①②③ B .②③④ C .①④⑤ D .②③
7、如图,有一个棱长是 的正方体,从它的一个顶点处挖去一个棱长是 的正方体后,剩下物体的表面积和原来的表面积相比较( )
A .变大了 B .变小了 C .没变 D .无法确定变化
8、一位美术老师在课堂上进行立体模型素描教学时,把14个棱长为 1分米的正方体摆在课桌上成如图形式,然后他把露出的表面都涂上不同的颜色,则被他涂上颜色部分的面积为( )
A .33分米2 B .24分米2 C .21分米2 D .42分米2
9、下列几何体中,属于棱锥的是( )
A . B .
C . D .
10、下列几何体中,由一个曲面和一个圆围成的几何体是( )
A .球 B .圆锥 C .圆柱 D .棱柱
11、下列命题中,假命题是( )
A .直角三角形斜边上的中线等于斜边的一半
B .等腰三角形顶角的平分线,底边上的中线,底边上的高相互重合
C .若 ,则点B是线段AC的中点
D .三角形三条边的垂直平分线的交点叫做这个三角形的外心
12、把如图的三角形绕它的最长边旋转一周,得到的几何体为图中的( )
A . B . C . D .
13、已知下图为一几何体的从三个不同方向看的形状图,若从正面看的长方形的长为 ,从上面看的等边三角形的边长为 ,则这个几何体的侧面积是( )
A . B . C . D .
14、下列几何体中,含有曲面的有( )
A .1个 B .2个 C .3个 D .4个
15、如图, 是直角三角形 的高,将直角三角形 按以下方式旋转一周可以得到右侧几何体的是( ).
A .绕着 旋转 B .绕着 旋转 C .绕着 旋转 D .绕着 旋转
16、围成下列立体图形的各个面中,每个面都是平的是( )
A . 长方体 B . 圆柱体
C . 球体 D . 圆锥体
17、下列图形属于平面图形的是( )
A .立方体 B .球 C .圆柱 D .三角形
二、填空题(每小题2分,共计40分)
1、一个几何体的三视图如图所示,则该几何体的表面积为 .(π取3)
2、棱长为2的正方体,摆成如图所示的形状,则该物体的表面积是 .
3、如图,长方形 ABCD 的长 AB=4,宽 BC=3,以 AB 所在的直线为轴,将长方形旋转一周后所得几何体的主视图的面积是 .
4、在朱自清的《春》中有描写春雨“像牛毛,像细丝,密密地斜织着”的语句,这里把雨看成了线,这说明 .(填“点动成线”,“线动成面”或“面动成体”)
5、如图所示,一个长方体的长为4cm,宽为3cm,高为5cm.则长方体所有棱长的和为 ;长方体的表面积为 .
6、在“抛掷正六面体”的试验中,正六面体的六个面分别标有数字“1”“2”“3”“4”“5”“6”,在试验次数很大时,数字“6”朝上的频率的变化趋势接近的值是 .
7、六个长方体包装盒按“规则方式”打包,所谓“规则方式”是指每相邻两个长方体必须以完全一样的面对接,最后得到的形状是一个更大的长方体,已知每一个小包装盒的长宽高分别为 5、4、3 则按“规则方式”打包后的大长方体的表面积最小是 .
8、在朱自清的《春》中有描写春雨“像牛毛,像细丝,密密地斜织着”的语句,这里把雨看成了线,这说明 .
9、由5个棱长为1的小正方形组成的几何体如图放置,一面着地,两面靠墙,如果要将露出来的部分涂色,则涂色部分的面积为 .
10、已知长方形的长为4cm , 宽3cm , 现将这个长方形绕它的一边所在直线旋转一周,则所得到的几何体的体积为 cm3 .
11、如图,在长方体ABCD﹣EFGH中,与平面ADHE垂直的棱共有 条.
12、汽车的雨刷把玻璃上的雨水刷干净,用数学知识解释为: .
13、长方形的长为5cm,宽为3cm,请你计算该长方形绕着它的边旋转一周所得几何体的体积0 是.(π取3.14结果保留整数)
14、如图,在长方体ABCD﹣EFGH中,与面ADHE与面ABFE都垂直的面是 .
15、长方体是由 个面围成,圆柱是由 个面围成,圆锥是由 个面围成.
16、一个正方体有 个面.
17、如图是由若干个棱长为1的小正方体组合而成的一个几何体的三视图,则这个几何体的表面积是 .
18、已知长方形长为5,宽为2,将其绕它的一条边所在的直线旋转一周,得到一个几何体,该几何体的体积为 .(结果保留 )
19、如图是某圆锥的主视图和左视图,则该圆锥的表面积是 .
20、如图,在一次数学活动课上,张明用17个边长为1的小正方形搭成了一个几何体,然后他请王亮用其他同样的小正方体在旁边再搭一个几何体,使王亮所搭几何体恰好可以和张明所搭几何体拼成一个无缝隙的大长方体(不改变张明所搭几何体的形状),那么王亮至少还需要个小立方体,王亮所搭几何体的表面积为 .
三、计算题(每小题2分,共计6分)
1、一个长方形的两边分别是2cm、3cm,若将这个长方形绕一边所在直线旋转一周后是一个什么几何体?请求出这个几何体的底面积和侧面积.
2、我们知道,长方形绕着它的一边旋转形成圆柱体,圆柱体的侧面展开图为长方形,现将一个长、宽分别为4cm和3cm的长方形绕着它的宽旋转一周,求形成的圆柱体的表面积.
3、有一个长方形绕它的一边所在的直线旋转一周,得到的几何体是圆柱.现在有一个长为6cm,宽为5cm的长方形,分别绕它的长、宽所在直线旋转一周,得到不同的圆柱,它们的体积分别是多大?
四、解答题(每小题4分,共计20分)
1、如图是一个长为4cm,宽为3cm的长方形纸片,该长方形纸片分别绕长、宽所在直线旋转一周(如图1、图2),会得到两个几何体,请你通过计算说明哪种方式得到的几何体的体积大(结果保留π)
2、探究:有一弦长6cm,宽4cm的矩形纸板,现要求以其一组对边为点所在直线为轴,旋转180°,得到一个圆柱,现可按照两种方案进行操作:
方案一:以较长的一组对边中点所在直线为轴旋转,如图①;
方案二:以较短的一组对边中点所在直线为轴旋转,如图②.
(1)请通过计算说明哪种方法构造的圆柱体积大;
(2)如果该矩形的长宽分别是5cm和3cm呢?请通过计算说明哪种方法构造的圆柱体积大;
(3)通过以上探究,你发现对于同一个矩形(不包括正方形),以其一组对边中点所在直线为轴旋转得到一个圆柱,怎样操作所得到的圆柱体积大(不必说明原因)?
3、写出下图中各个几何体的名称,并按锥体和柱体把它们分类.
4、将一个正方体木块涂成红色,然后如图把它的棱三等分,再沿等分线把正方体切开,可以得到27个小正方体.观察并回答下列问题:
(1)其中三面涂色的小正方体有 个,两面涂色的小正方体有 个,各面都没有涂色的小正方体有 个;
(2)如果将这个正方体的棱n等分,所得的小正方体中三面涂色的有 个,各面都没有涂色的有 个;
(3)如果要得到各面都没有涂色的小正方体100个,那么至少应该将此正方体的棱 等分.
5、如图,将下列图形与对应的图形名称用线连接起来:
展开阅读全文