收藏 分销(赏)

2019_2020学年九年级数学上册期末考点大串讲圆的有关性质含解析新版新人教版.docx

上传人:二*** 文档编号:4441400 上传时间:2024-09-22 格式:DOCX 页数:22 大小:348KB
下载 相关 举报
2019_2020学年九年级数学上册期末考点大串讲圆的有关性质含解析新版新人教版.docx_第1页
第1页 / 共22页
亲,该文档总共22页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述

1、22圆的有关性质知识网络重难突破知识点一 圆的基础概念圆的概念:在一个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点A所形成的图形叫圆这个固定的端点O叫做圆心,线段OA叫做半径以O点为圆心的圆记作O,读作圆O特点:圆是在一个平面内,所有到一个定点的距离等于定长的点组成的图形确定圆的条件: 圆心; 半径, 其中圆心确定圆的位置,半径长确定圆的大小补充知识:1)圆心相同且半径相等的圆叫做同圆;2)圆心相同,半径不相等的两个圆叫做同心圆;3)半径相等的圆叫做等圆 弦的概念:连结圆上任意两点的线段叫做弦。经过圆心的弦叫做直径,并且直径是同一圆中最长的弦弧的概念:圆上任意两点间的部分叫做圆弧,

2、简称弧以A、B为端点的弧记作AB,读作弧AB在同圆或等圆中,能够重合的弧叫做等弧圆的任意一条直径的两个端点把圆分成两条弧,每一条弧都叫做半圆在一个圆中大于半圆的弧叫做优弧,小于半圆的弧叫做劣弧弦心距概念:从圆心到弦的距离叫做弦心距弦心距、半径、弦长的关系:(考点) 典例1(2017费县期末)下列命题中正确的有( )弦是圆上任意两点之间的部分;半径是弦;直径是最长的弦;弧是半圆,半圆是弧A1个 B2个 C3个 D4个【答案】A【解析】弦是圆上任意两点之间的连线段,所以错误;半径不是弦,所以错误;直径是最长的弦,正确;弧是半圆,只有180的弧才是半圆,所以错误,故选A典例2(2019汕头市期末)已

3、知O中最长的弦为8cm,则O的半径为()cmA.2B.4C.8D.16【答案】B【详解】O中最长的弦为8cm,即直径为8cm,O的半径为4cm故选:B.【名师点睛】本题考查弦,直径等知识,记住圆中的最长的弦就是直径是解题的关键典例3(2018大庆市期末)下列说法错误的是( )A直径是圆中最长的弦 B长度相等的两条弧是等弧C面积相等的两个圆是等圆 D半径相等的两个半圆是等弧【答案】B【解析】试题解析:A、直径是圆中最长的弦,所以A选项的说法正确;B、在同圆或等圆中,长度相等的两条弧是等弧,所以B选项的说法错误;C、面积相等的两个圆的半径相等,则它们是等圆,所以C选项的说法正确;D、半径相等的两个

4、半圆是等弧,所以D选项的说法正确故选B典例4 下列命题中正确的是( )A过圆心的线段叫做圆的直径 B面积相等的两个圆是等圆C大于半圆的弧叫劣弧 D平分弦的直径垂直于这条弦【答案】B【详解】A、直径是经过圆心的弦,两端点要在圆上,错误;B、圆的面积相等,则它们的半径相等,是等圆,正确;C、大于半圆的弧叫优弧,错误;D、平分弦(不是直径)的直径垂直于这条弦,错误;故选B【名师点睛】本题考查了直径,等圆,优弧,劣弧的概念及垂径定理典例5(2019余杭区期末)已知AB是半径为5的圆的一条弦,则AB的长不可能是( )A4B8C10D12【答案】D【详解】因为圆中最长的弦为直径,所以弦长L10故选:D【名

5、师点睛】考查圆的性质,掌握直径是圆中最长的弦是解题的关键.知识点二 垂径定理垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧推论:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧;常见辅助线做法(考点):1) 过圆心,作垂线,连半径,造RT,用勾股,求长度;2) 有弧中点,连中点和圆心,得垂直平分典例1(2019广东铁一中学初三期中)将半径为3cm的圆形纸片沿AB折叠后,圆弧恰好能经过圆心O,则AOB的度数为()A90B120C135D150【答案】B【详解】过O点作OCAB,垂足为D,交O于点C,由折叠的性质可知,OD=12OC=12OA,由此可得在RtAOD中,OAD=3

6、0,同理可得OBD=30在AOB中,由内角和定理,得:AOB=180OADOBD=120故选B【名师点睛】本题考查了垂径定理,折叠的性质,特殊直角三角形的判断关键是由折叠的性质得出含30的直角三角形典例2(2019赣州市期中)下列说法正确的是()A平分弦的直径垂直于弦B圆是轴对称图形,任何一条直径都是圆的对称轴C相等的弧所对弦相等D长度相等弧是等弧【答案】C【详解】解:A.错误需要添加此弦非直径的条件;B.错误应该是圆是轴对称图形,任何一条直径所在的直线都是圆的对称轴;C.正确D.错误长度相等弧是不一定是等弧,等弧的长度相等;故选C【名师点睛】本题考查垂径定理,等弧的定义,圆的有关性质等知识,

7、解题的关键是熟练掌握基本知识,属于中考常考题型典例3(2018山东胜利一中初三期末)如图,圆弧形桥拱的跨度AB=16m,拱高CD=4m,则圆弧形桥拱所在圆的半径为()A.6 mB.8 mC.10 mD.12 m【答案】C【解析】【详解】根据垂径定理的推论,知此圆的圆心在CD所在的直线上,设圆心是O,连接OA根据垂径定理,得AD=8,设圆的半径是r,根据勾股定理,得r2=82+(r-4)2,解得r=10m故选C【名师点睛】本题考查了勾股定理及垂径定理解题的关键是构造由半径、半弦、弦心距组成的直角三角形进行有关的计算典例4(2018寿光县期末)已知:如图,O的直径CD垂直于弦AB,垂足为P,且AP

8、=4cm,PD=2cm,则O的半径为()A.4cmB.5cmC.42cmD.23cm【答案】B【详解】连结OA,如图,设O的半径为R,CDAB,APO=90BP,在RtOAP中,OP=ODPD=r2,OA=r,AP=4,(r2)2+42=r2,解得r=5,即O的半径为5cm.故选B.【名师点睛】本题考查了垂径定理、勾股定理,解题的关键是掌握垂径定理、 勾股定理.知识点三 圆心角、弧、弦、弦心距之间的关系圆心角概念:顶点在圆心的角叫做圆心角定理:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等。推论:在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两条弦的弦心距中有一组量相等,那么它们所对

9、应的其余各组量分别相等典例1(2018燕山区期末)如图,圆心角AOB=25,将弧AB旋转n得到弧CD,则COD等于()A.25B.25+nC.50D.50+n【答案】A【解析】试题解析:将AB旋转n得到CD,AB=CD,DOC=AOB=25故选A典例2 如图,已知AB是O的直径,D、C是劣弧EB的三等分点,BOC=40,那么AOE=( )A.40B.60C.80D.120【答案】B【详解】D、C是劣弧EB的三等分点,BOC=40EOD=COD=BOC=40AOE=60故选:B【名师点睛】本题考查了圆心角、弧、弦的关系,解题的关键是掌握同弧所对的圆心角相等.典例3 (2018泗阳县期中)下列命题

10、中,真命题是( )A相等的圆心角所对的弧相等B面积相等的两个圆是等圆C三角形的内心到各顶点的距离相等D长度相等的弧是等弧【答案】B【详解】A、在同圆或等圆中,相等的圆心角所对的弧相等,故错误,是假命题;B、面积相等的两个圆的半径相等,是等圆,故正确,是真命题;C、三角形的内心到三角形各边的距离相等,故错误,是假命题;D、在同圆或等圆中,长度相等的弧是等弧,故错误,是假命题,故选:B【名师点睛】本题考查命题与定理的知识,解题关键是圆周角定理,等圆的定义、三角形的内心的性质,属于基础定义,难度不大知识点四 圆周角定理(考点)圆周角概念:顶点在圆上,并且两边都和圆相交的角叫做圆周角圆周角定理:在同圆

11、或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半推论1:在同圆或等圆中,如果两个圆周角相等,它们所对的弧一定相等推论2:半圆(或直径)所对的圆周角是直角,90的圆周角所对的弦是直径 (在同圆中,半弧所对的圆心角等于全弧所对的圆周角)典例1(2018泗阳县期末)如图,AB是O的直径,BC是O的弦,已知AOC80,则ABC的度数为()A20B30C40D50【答案】C【详解】AC=AC,ABC=12AOC=1280=40,故选C【名师点睛】本题考查了圆周角定理,熟练掌握“在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对圆心角的一半”是解题的关键.典例2(2017安定

12、县期末)如图,已知AB是O的直径,D=40,则CAB的大小为( )A.20B.40C.50D.70【答案】C【解析】D=40,B=D=40.AB是O的直径,ACB=90,CAB=9040=50.故选:C.【名师点睛】本题考查的是圆周角定理,熟知在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半是解答此题的关键.典例3(2017余杭区期中)如图所示的暗礁区,两灯塔A,B之间的距离恰好等于圆的半径,为了使航船(S)不进入暗礁区,那么S对两灯塔A,B的视角ASB必须()A.大于60B.小于60C.大于30D.小于30【答案】D【解析】试题解析:连接OA,OB,AB,BC,如图

13、:AB=OA=OB,即AOB为等边三角形,AOB=60,ACB与AOB所对的弧都为AB,ACB=12AOB=30,又ACB为SCB的外角,ACBASB,即ASB30故选D典例4(2018苏州市期中)如图,AB是O的直径,C,D是O上位于AB异侧的两点下列四个角中,一定与ACD互余的角是()AADCBABDCBACDBAD【答案】D【解析】ACD对的弧是AD,AD对的另一个圆周角是ABD,ABD=ACD(同圆中,同弧所对的圆周角相等),故选B.知识点五 圆内接四边形圆内接四边形概念:如果一个多边形的所有顶点都在同一个圆上,这个多边形叫做圆内接多边形。这个圆叫做这个多边形的外接圆。性质:圆内接四边

14、形的对角互补,一个外角等于其内对角典例1(2016萧山区期中)如图,四边形ABCD内接于O,AB为O的直径,点C为弧BD的中点,若DAB=40,则ABC=_【答案】70【解析】连接AC,点C为弧BD的中点,CAB=12DAB=20,AB为O的直径,ACB=90,ABC=70,故答案为:70【名师点睛】本题主要考查了圆周角定理以及推论,连接AC是解本题的关键.典例2(2016萧山区期中)如图,正五边形ABCDE为内接于O的,则ABD=_【答案】72【解析】连接AO、DO,根据正五边形的性质求出AOD,再根据同弧所对的圆周角等于圆心角的一半列式计算即可得解 解:如图,连接AO、DO,五边形ABCD

15、E是正五边形,AOD=25360=144,ABD=12AOD=12144=72巩固训练一、单选题(共10小题)1(2018江都区期中)如图,把一个球放在长方体纸盒内,球的一部分露出盒外,其截面如图所示已知EF=CD=4 cm,则球的半径长是( )A2 cmB2.5 cmC3 cmD4 cm【答案】B【解析】由题意,O与BC相切,记切点为G,作直线OG,分别交AD、劣弧EF于点H、I,再连接OF,在矩形ABCD中,ADBC,而IGBC,IGAD,在O中,FH=12EF=2,设求半径为r,则OH=4-r,在RtOFH中,r2-(4-r)2=22,解得r=2.5,这个球的半径是2.5厘米故选B.【名

16、师点睛】本题考查了切线的性质、垂径定理以及勾股定理,难度适中,注意掌握辅助线的作法,注意掌握方程思想与数形结合思想的应用2(2018泸西县期中)已知O的半径为10,圆心O到弦AB的距离为5,则弦AB所对的圆周角的度数是()A.30B.60C.30或150D.60或120【答案】D【详解】由图可知,OA=10,OD=5,在RtOAD中,OA=10,OD=5,AD=OA2-OD2=53,tan1=ADOD=3,1=60,同理可得2=60,AOB=1+2=60+60=120,C=60,E=180-60=120,即弦AB所对的圆周角的度数是60或120,故选D【名师点睛】本题考查了圆周角定理、圆内接四

17、边形的对角互补、解直角三角形的应用等,正确画出图形,熟练应用相关知识是解题的关键.3(2018滨海新区期中)如图,点B,C,D在O上,若BCD130,则BOD的度数是()A.50B.60C.80D.100【答案】D【详解】圆上取一点A,连接AB,AD,点A、B,C,D在O上,BCD=130,BAD=50,BOD=100.故选D【名师点睛】此题考查了圆周角的性质与圆的内接四边形的性质此题比较简单,解题的关键是注意数形结合思想的应用,注意辅助线的作法4(2018襄阳市期中)如图,AB为O的直径,CD是O的弦,ADC=35,则CAB的度数为( )A.35B.45C.55D.65【答案】C【解析】AD

18、C=35,ADC与B所对的弧相同,B=ADC=35,AB是O的直径,ACB=90,CAB=90-B=55,故选C【名师点睛】本题考查了同弧所对的圆周角相等以及直径所对的圆周角是直角等知识.5(2018滨海新区期中)如图,ABC是O的内接三角形,ABAC,BCA65,作CDAB,并与O相交于点D,连接BD,则DBC的大小为A15B35C25D45【答案】A【详解】AB=AC,ABC=ACB=65,A=180-ABC-ACB=50,DC/AB,ACD=A=50,又D=A=50,DBC=180-D -BCD=180-50-(65+50)=15,故选A.【名师点睛】本题考查了等腰三角形的性质,圆周角定

19、理,三角形内角和定理等,熟练掌握相关内容是解题的关键.6(2018驻马店市期中)下列命题中是真命题的有()两个端点能够重合的弧是等弧;圆的任意一条弦把圆分成优弧和劣弧两部分;长度相等的弧是等弧;半径相等的两个圆是等圆;直径是圆中最长的弦A5个 B4个 C3个 D2个【答案】D【详解】能够重合的弧是等弧,是假命题; 圆的任意一条不是直径的弦把圆分成优弧和劣弧两部分,是假命题; 长度相等的弧不一定是等弧,是假命题; 半径相等的两个圆是等圆,是真命题; 直径是圆中最长的弦,是真命题; 故选:D【名师点睛】本题考查圆的有关基本知识,命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题判断命题的真假

20、关键是要熟悉课本中的性质定理7(2018菏泽市期末)如图,AB是O的直径,弦CDAB于点E若AB=8,AE=1,则弦CD的长是( )A.7B.27C.6D.8【答案】B【详解】试题解析:由题意连接OC,得OE=OB-AE=4-1=3,CE=CD= OC2-OE2=7,CD=2CE=27,故选B8(2018西湖区期中)如图,AB是O的直径,弦CDAB于点E,OC=5cm,CD=8cm,则AE= ( )A.8cmB.5cmC.3cmD.2cm【答案】A【解析】弦CDAB于点E,CD=8cm,CE=12CD=4cm在RtOCE中,OC=5cm,CE=4cm,OE=OC2-CE2=3cm,AE=AO+

21、OE=5+3=8cm故选:A【名师点睛】本题考查了垂径定理以及勾股定理,利用垂径定理结合勾股定理求出OE的长度是解题的关键9(2018三门峡市期末)如图所示,在O中,点A,O,D以及点B,O,C分别在一条直线上,则图中的弦有( )A2条B3条C4条D5条【答案】B【详解】图中的弦有AB,BC,CE共三条,故选B【名师点睛】本题考查了弦的定义:连接圆上任意两点的线段叫弦10(2018乐山市期中)如图,在O中,圆心角AOB=120,P为弧AB上一点,则APB度数是( )A.100B.110C.120D.130【答案】C【解析】试题解析:在优弧AB上取点C,连接AC、BC,由圆周角定理得,ACB=1

22、2AOB=60, 由圆内接四边形的性质得到,APB=180-ACB=120, 故选C.二、填空题(共5小题)11(2018天水市期末)如图,AB为ADC的外接圆O的直径,若BAD=50,则ACD=_【答案】40【详解】连接BD,如图,AB为ADC的外接圆O的直径,ADB=90,ABD=90BAD=9050=40,ACD=ABD=40,故答案为:40【名师点睛】本题考查了圆周角定理及其推论:同弧所对的圆周角相等;半圆(弧)和直径所对的圆周角是直角,正确添加辅助线是解题的关键.12(2018盐城市期末)已知O的半径为10cm,AB,CD是O的两条弦,AB=16cm,CD=12cm,则弦AB和CD之

23、间的距离是_cm【答案】2或14【解析】当弦AB和CD在圆心同侧时,如图,AB=16cm,CD=12cm,AE=8cm,CF=6cm,OA=OC=10cm,EO=6cm,OF=8cm,EF=OF-OE=2cm;当弦AB和CD在圆心异侧时,如图,AB=16cm,CD=12cm,AF=8cm,CE=6cm,OA=OC=10cm,OF=6cm,OE=8cm,EF=OF+OE=14cmAB与CD之间的距离为14cm或2cm故答案为:2或14【名师点睛】本题考查了勾股定理和垂径定理的应用此题难度适中,解题的关键是注意掌握数形结合思想与分类讨论思想的应用,小心别漏解13(2018商丘市期末)如图,AB为O

24、的直径,弦CDAB于点E,已知CD6,EB1,则O的半径为_【答案】5【解析】解:连接OC,AB为O的直径,ABCD,CE=DE=12CD=126=3,设O的半径为xcm,则OC=xcm,OE=OBBE=x1,在RtOCE中,OC2=OE2+CE2,x2=32+(x1)2,解得:x=5,O的半径为5,故答案为:5【名师点睛】本题利用了垂径定理和勾股定理求解,熟练掌握并应用定理是解题的关键14(2018台州市期中)如图,点A,B,C,D在O上,CB=CD,CAD=30,ACD=50,则ADB=_【答案】70【解析】CB=CD,CAB=CAD=30,ABD=ACD=50,ADB=180-BAD-A

25、BD=70故答案为:70. 【名师点睛】考查圆周角定理和三角形的内角和定理,熟练掌握圆周角定理是解题的关键.15(2017如皋市期中)如图,ABC内接于O,若OAB=32,则C=_【答案】58【解析】试题解析:如图,连接OB,OA=OB,AOB是等腰三角形,OAB=OBA,OAB=32,OAB=OAB=32,AOB=116,C=58故答案为:58.三、解答题(共3小题)16(2016朝阳区期末)九章算术是中国传统数学重要的著作,奠定了中国传统数学的基本框架九章算术中记载:“今有圆材,埋在壁中,不知大小,以锯锯之,深一寸,锯道长一尺,间径几何?”(如图)阅读完这段文字后,小智画出了一个圆柱截面示

26、意图(如图),其中BOCD于点A,求间径就是要求O的直径再次阅读后,发现AB= 寸,CD= 寸(一尺等于十寸),通过运用有关知识即可解决这个问题请你补全题目条件,并帮助小智求出O的直径【答案】AB=1寸,CD=10寸,的直径为26寸【解析】连接CO,BOCD,CA=12CD=5,设CO=x,则AO=x-1,在RtCAO中,CAO=90,AO2+CA2=CO2x-12+52=x2 解得x=13,O的直径为26寸17(2019龙岩市期中)如图,AB是O的一条弦,ODAB,垂足为点C,交O于点D,点E在O上(1)若AOD=52,求DEB的度数;(2)若CD=2,AB=8,求半径的长【答案】(1)26

27、;(2)5;【详解】(1)ODAB,AD=BD,AOD=52,DEB=1252=26(2)设O的半径为x,则OC=OD-CD=x-2,ODAB,AC=12AB=128=4,在RtAOC中,OA2=AC2+OC2,x2=42+(x-2)2,解得:x=5,O的半径为5【名师点睛】此题考查了圆周角定理、垂径定理以及勾股定理此题难度不大,注意掌握数形结合思想与方程思想的应用18(2018玉山县期末)如图,AB是O的直径,CD是O的弦,AB、CD的延长线相交于点E.已知AB2DE,E18.试求AOC的度数【答案】AOC54【详解】连接OD, AB2DE,AB2OD, ODDE,DOEE, ODC2E36, OCOD,CODC36, AOCC+E54

展开阅读全文
部分上传会员的收益排行 01、路***(¥15400+),02、曲****(¥15300+),
03、wei****016(¥13200+),04、大***流(¥12600+),
05、Fis****915(¥4200+),06、h****i(¥4100+),
07、Q**(¥3400+),08、自******点(¥2400+),
09、h*****x(¥1400+),10、c****e(¥1100+),
11、be*****ha(¥800+),12、13********8(¥800+)。
相似文档                                   自信AI助手自信AI助手
搜索标签

当前位置:首页 > 教育专区 > 初中数学

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2024 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服