资源描述
2.1.1-2.1
[基础巩固](25分钟,60分)
一、选择题(每小题5分,共25分)
1.若点M在直线a上,a在平面α内,则M,a,α间的关系可记为( )
A.M∈a,a∈α B.M∈a,a⊂α
C.M⊂a,a⊂α D.M⊂a,a∈α
解析:根据点与直线、直线与平面之间位置关系的符号表示,可知B正确.
答案:B
2.给出下面四个命题:
①三个不同的点确定一个平面;
②一条直线和一个点确定一个平面;
③空间两两相交的三条直线确定一个平面;
④两条平行直线确定一个平面.
其中正确的命题是( )
A.① B.②
C.③ D.④
解析:对于①,三个不共线的点确定一个平面,故错;对于②,一条直线和直线外一个点确定一个平面,故错;对于③,空间两两相交的三条直线,且不能交于同一点,确定一个平面,故错;对于④,两条平行直线确定一个平面,正确.
答案:D
3.下面空间图形画法错误的是( )
解析:画立体图时,被平面遮住的部分画成虚线或不画.
答案:D
4.给出以下四个命题:
①不共面的四点中,其中任意三点不共线;
②若点A,B,C,D共面,点A,B,C,E共面,则点A,B,C,D,E共面;
③若直线a,b共面,直线a,c共面,则直线b,c共面;
④依次首尾相接的四条线段必共面.
其中正确命题的个数是( )
A.0 B.1
C.2 D.3
解析:①假设其中有三点共线,则该直线和直线外的另一点确定一个平面,这与四点不共面矛盾,故其中任意三点不共线,所以①正确;②如图,两个相交平面有三个公共点A,B,C,但A,B,C,D,E不共面;③显然不正确;④不正确,因为此时所得的四边形的四条边可以不在一个平面上,如空间四边形.
答案:B
5.在空间四边形ABCD中,在AB,BC,CD,DA上分别取E,F,G,H四点,如果GH,EF交于一点P,则( )
A.P一定在直线BD上
B.P一定在直线AC上
C.P在直线AC或BD上
D.P既不在直线BD上,也不在AC上
解析:由题意知GH⊂平面ADC.因为GH,EF交于一点P,所以P∈平面ADC.同理,P∈平面ABC.因为平面ABC∩平面ADC=AC,由公理3可知点P一定在直线AC上.
答案:B
二、填空题(每小题5分,共15分)
6.设平面α与平面β相交于直线l,直线a⊂α,直线b⊂β,a∩b=M,则点M与l的位置关系为________.
解析:因为a∩b=M,a⊂α,b⊂β,所以M∈α,M∈β.又平面α与平面β相交于直线l,所以点M在直线l上,即M∈l.
答案:M∈l
7.给出以下命题:①和一条直线都相交的两条直线在同一平面内;②三条两两相交的直线在同一平面内;③有三个不同公共点的两个平面重合;④两两平行的三条直线确定三个平面.其中正确命题的个数是________.
解析:空间中和一条直线都相交的两条直线不一定在同一平面内,故①错;若三条直线相交于一点时,不一定在同一平面内,如长方体一角的三条线,故②错;若两平面相交时,也可有三个不同的公共点,故③错;若三条直线两两平行且在同一平面内,则只有一个平面,故④错.
答案:0
8.把下列符号叙述所对应的图形的序号填在题后的横线上:
(1)A∉α,a⊂α:________.
(2)α∩β=a,P∉α,且P∉β:________.
(3)a⊄α,a∩α=A:________.
(4)α∩β=a,α∩γ=c,β∩γ=b,a∩b∩c=O:________.
答案:(1)③ (2)④ (3)① (4)②
三、解答题(每小题10分,共20分)
9.完成下列各题:
(1)将下列文字语言转换为符号语言.
①点A在平面α内,但不在平面β内;
②直线a经过平面α外一点M;
③直线l在平面α内,又在平面β内(即平面α和平面β相交于直线l).
(2)将下列符号语言转换为图形语言.
①a⊂α,b∩α=A,A∉a;
②α∩β=c,a⊂α,b⊂β,a∥c,b∩c=P.
解析:(1)①A∈α,A∉β.
②M∈a,M∉α.
③α∩β=l.
(2)①
②
10.在正方体ABCD-A1B1C1D1中,点M、N、E、F分别是棱CD、AB、DD1、AA1上的点,若MN与EF交于点Q,求证:D、A、Q三点共线.
证明:∵MN∩EF=Q,∴Q∈直线MN,Q∈直线EF,
∵M∈直线CD,N∈直线AB,CD⊂平面ABCD,AB⊂平面ABCD,
∴M、N∈平面ABCD,∴MN⊂平面ABCD,
∴Q∈平面ABCD.
同理,EF⊂平面ADD1A1,∴Q∈平面ADD1A1,
又∵平面ABCD∩平面ADD1A1=AD,
∴Q∈直线AD,即D,A,Q三点共线.
[能力提升](20分钟,40分)
11.用一个平面截正方体所得的截面图形不可能是( )
A.六边形 B.五边形
C.菱形 D.直角三角形
解析:可用排除法,正方体的截面图形可能是六边形、五边形、菱形,故选D.
答案:D
12.平面α,β相交,在α,β内各取两点,这四点都不在交线上,这四点能确定________个平面.
解析:如果这四点在同一平面内,那么确定一个平面;如果这四点不共面,则任意三点可确定一个平面,所以可确定四个.
答案:1或4
13.如图所示,已知直线a∥b∥c,l∩a=A,l∩b=B,l∩c=C.求证:直线a,b,c和l共面.
证明:∵a∥b,∴a,b确定一个平面α.
∵A∈a,B∈b,∴A∈α,B∈α.
则a,b,l都在平面α内,即b在a,l确定的平面内.
同理可证c在a,l确定的平面内.
∵过a与l只能确定一个平面,
∴a,b,c,l共面于a,l确定的平面.
14.如图所示,在正方体ABCD-A1B1C1D1中,E为AB的中点,F为AA1的中点.求证:CE,D1F,DA三线交于一点.
证明:连接EF,D1C,A1B,
因为E为AB的中点,F为AA1的中点,
所以EF綊A1B.
又因为A1B綊D1C,
所以EF綊D1C,
所以E,F,D1,C四点共面,
可设D1F∩CE=P.
又D1F⊂平面A1D1DA,CE⊂平面ABCD,
所以点P为平面A1D1DA与平面ABCD的公共点.
又因为平面A1D1DA∩平面ABCD=DA,
所以据公理3可得P∈DA,即CE,D1F,DA三线交于一点.
展开阅读全文