1、北师大版七年级数学上册单元练习试卷不含答案(考试时间:120分钟,总分100分)班级:_ 姓名:_ 分数:_一、单选题(每小题2分,共计30分)1、观察下图,把左边的图形绕着给定的直线旋转一周后,可能形成的立体图形是( )A . B . C . D .2、如图,一个正方体的六个面上分别标有数字1,2,3,4,5,6.根据图中三种状态所显示的数字,正方体的正面“?”表示的数字是( )A .1 B .2 C .3 D .63、下边的立体图形是由哪个平面图形绕轴旋转一周得到的( )A . B . C . D .4、将下列平面图形绕轴旋转一周,能得到图中所示立体图形的是( )A . B . C . D
2、 .5、下列几何图形中为圆锥的是( ).A . B . C . D .6、将如图所示的RtACB绕直角边AC旋转一周,所得几何体的主视图(正视图)是( )A . B . C . D .7、将选项中的直角梯形绕直线旋转一周,可以得到如图的立体图形的是( )A . B . C . D .8、下列几何体中,含有曲面的有( )A .1个 B .2个 C .3个 D .4个9、下列图形绕虚线旋转一周,便能形成圆锥体的是()A . B . C . D .10、如图,将长方形ABCD绕虚线l旋转一周,则形成的几何体的体积为( )A .r2h B .2r2h C .3r2h D .4r2h11、一个物体的外形
3、是长方体(如图(1),其内部构造不祥.用平面横向自上而下截这个物体时,得到了一组截面,截面形状如图(2)所示,这个长方体的内部构造是( )A .圆柱 B .球 C .圆锥 D .圆柱或球12、如图,将一个直角三角形绕它的一条直角边所在的直线旋转一周,得到的几何体是圆锥,这一现象能用以下哪个数学知识解释( )A .点动成线 B .线动成面 C .面动成体 D .面面相交得线13、一位雕塑家利用15个棱长为1米的相同正方体,在公园空地设计了一个如图所示的几何体造型,需要把露出的表面都涂上颜色,则需要涂颜色部分的面积为( )A .46米2 B .37米2 C .28米2 D .25米214、矩形AB
4、CD中,AB=3,BC=4,以AB为轴旋转一周得到圆柱,则它的表面积是( ).A .56 B .32 C .24 D .6015、下面几何体中,是长方体的为( )A . B . C . D .二、填空题(每小题4分,共计20分)1、一个正方体的表面积是24,那么这个正方体的所有棱长之和是 .2、铅笔在纸上划过会留下痕迹,这种现象说明点动成线;一枚硬币在光滑的桌面上快速旋转,看上去像形成了一个球,这体现的数学知识是 3、10个棱长为a cm的正方体摆放成如图的形状,这个图形的表面积是 .4、若三棱柱的高为6 cm,底面边长都为5 cm,则三棱柱的侧面展开图的周长为 cm,面积为 cm25、笔尖在
5、纸上快速滑动写出了一个字母,用数学知识解释为 。三、判断题(每小题2分,共计6分)1、棱柱侧面的形状可能是一个三角形。( )2、体是由面围成的( )四、计算题(每小题4分,共计12分)1、有一个长方形绕它的一边所在的直线旋转一周,得到的几何体是圆柱现在有一个长为6cm,宽为5cm的长方形,分别绕它的长、宽所在直线旋转一周,得到不同的圆柱,它们的体积分别是多大?2、一个长方形的两边分别是2cm、3cm,若将这个长方形绕一边所在直线旋转一周后是一个什么几何体?请求出这个几何体的底面积和侧面积3、我们知道,长方形绕着它的一边旋转形成圆柱体,圆柱体的侧面展开图为长方形,现将一个长、宽分别为4cm和3c
6、m的长方形绕着它的宽旋转一周,求形成的圆柱体的表面积五、解答题(每小题4分,共计32分)1、如下图,第二行的图形绕虚线旋转一周,便能形成第一行的某个几何体,用线连一连2、下图是长方体的表面展开图,将它折叠成一个长方体.(1) 哪几个点与点重合?(2) 若,求这个长方体的表面积和体积.3、写出下图中各个几何体的名称,并按锥体和柱体把它们分类4、如图,长方形的长和宽分别是7cm和3cm,分别绕着它的长和宽所在的直线旋转一周,回答下列问题:(1)如图(1),绕着它的宽所在的直线旋转一周,所得到的是什么样的几何体?得到的几何体的体积是多少?(取3.14)(2)如图(2),绕着它的长所在的直线旋转一周,
7、所得到的是什么样的几何体?得到的几何体的体积是多少?(取3.14)5、如图1,把一张长10厘米、宽6厘米的长方形纸板分成两个相同的直角三角形(1)甲三角形(如图2)旋转一周,可以形成一个怎样的几何体?它的体积是多少立方米?(2)乙三角形(如图3)旋转一周,可以形成一个怎样的几何体?它的体积是多少立方米?6、在小学,我们曾学过圆柱的体积计算公式:v=R2h (R是圆柱底面半径,h为圆柱的高)现有一个长方形,长为2cm宽为1cm,分别以它的两边所在的直线为轴旋转一周得到的几何体的体积分别是多少?它们之间有何关系?7、如图,梯形ABCD中,ABCD,ABC=90,AB=8,CD=6,BC=4,AB边上有一动点P(不与A、B重合),连结DP,作PQDP,使得PQ交射线BC于点E,设AP=x当x为何值时,APD是等腰三角形?若设BE=y,求y关于x的函数关系式;若BC的长可以变化,在现在的条件下,是否存在点P,使得PQ经过点C?若存在,求出相应的AP的长;若不存在,请说明理由,并直接写出当BC的长在什么范围内时,可以存在这样的点P,使得PQ经过点C8、如图1是三个直立于水面上的形状完全相同的几何体(下底面为圆面,单位:厘米),将它们拼成如图2的新几何体,求该新几何体的体积(结果保留)