1、中位数与众数-教学设计教案:中位数与众数教材来源:初中八年级数学(上册)教科书/北京师范大学出版社2013年版 内容来源:初中八年级数学(上册)第六章 第二节标题:中位数与众数课时:1课时授课对象:八年级学生设计者:张金金/郑州市郑东新区龙翔初级中学一、 目标确定依据 课程标准相关要求:掌握中位数、众数等数据代表的概念,能根据所给信息求出相应的数据代表。结合具体情境体会平均数、中位数和众数三者的差别,能初步选择恰当的数据代表对一组数据做出自己的判断。学情分析:经过前两节课的学习,学生已理解算术平均数和加权平均数的联系与区别,会求一组数据的算术平均数和加权平均数,能利用平均数解决实际问题。学生在
2、算术平均数和加权平均数的学习活动中,解决了一些相关的实际问题,体会到权的差异对平均数的影响,获得了从事统计活动所必须的一些数学活动经验,初步形成了动手实践、自主探索、合作交流的学习方式。 教材分析本节进一步学习描述数据集中趋势的另外两个量中位数和众数。教科书首先设计了一个具体的问题情境,让学生从中感受描述一组数据的集中趋势可以有不同的方法,这样既巩固了平均数的概念,又引起了学生的认知冲突,感受到学习中位数与众数的必要性,十分自然的引出中位数与众数的概念;在此基础上,在通过“做一做”进行巩固练习;最后通过对有关概念的辨析,让学生感受平均数、中位数,众数各自的特点和应用范围,初步具备根据问题背景选
3、择合适的量描述数据集中趋势的能力。二、学习目标:.能说出中位数、众数的概念,会求出一组数据的中位数与众数;2.能准确说一组具体数据的平均数,中位数与众数;.结合具体情境,能初步选择恰当的数据代表(平均数、中位数和众数)对数据作出自己的正确评判。二、教学过程设计本节课设计了五个教学环节:第一环节:情境引入;第二环节:合作探究;第三环节:运用提高;第四环节:课堂小结;第五环节:布置作业。第一环节:情境引入 内容:在当今信息时代,信息的重要性不言而喻,人们经常要求一些信息“用数据说话”,所以对数据作出恰当的评判是很重要的。下面请看一例:某次数学考试,小英得了79分。全班共30人,其他同学的成绩为1个
4、100分,5个90分,20个80分,1个61分,1个30分,1个20分。小英计算出全班的平均分为78分,所以小英告诉妈妈说,自己这次数学成绩在班上处于“中上水平”。小英对妈妈说的情况属实吗?你对此有何看法?引导学生展开讨论,作出评判:平均数是我们常用的一个数据代表,但是在这里,利用平均数把倒数第四的成绩说成处于班级的“中上水平”显然是不属实的。原因是全班的平均分受到了两个极端数据30分和20分的影响,利用平均数反应问题就出现了偏差。怎样说明这个问题呢?我们需要学习新的数据代表中位数与众数。目的:一、复习平均数的概念与计算,同时说明有些数据信息仅仅知道平均数是不够的,从而为引入新的数据代表奠定基
5、础。二、根据学生的认知规律,创设一种引人入胜的教学情景,引起学生对“平均水平”的认知冲突。第二环节:合作探究内容:应聘者小王到某公司应聘,经理说:我公司员工收入很高,月平均工资为2700元。小王就很高兴的进入这家公司,但是几天后,他发现身边的同事没有一个人工资达到2700元,他就去找经理,经理递给他一张公司员工工资单:公司员工的月工资如下: 员 工经理副经理职员A职员B职员C职员D职员E职员F杂工G月工资/元700044002400200019001800180018001200职员C说:我的工资是1900元,在公司算中等收入。职员D说:我们好几个人工资都是1800元。一位应聘者心里在琢磨:这
6、个公司员工收入到底怎样呢?你怎样看待该公司员工的收入?学生四人小组讨论,交流自己的看法,教师对表现积极的学生予以鼓励。在学生讨论交流的基础上,教师进行点拨:上述问题中,经理、职员C、职员D从不同的角度描述了该公司的收入情况:(1)月平均工资2700元,指所有员工工资的平均数是2700元,但只有正、副经理的工资比平均工资高,是他两人的工资把平均工资“拉”高了。(2)职员C的工资是1900元,恰好居于所有员工工资的“正中间”(恰有4人的工资比他高,有4人的工资比他低),我们称1900元是这组数据的中位数。(3)9个员工中有3个人的工资为1800元,出现的次数最多,我们称1800元是这组数据的众数。
7、议一议:你认为用哪个数据表示该公司员工收入的平均水平更合适?让学生讨论,充分发表不同的观点,然后归纳起来:用中位数1900元或众数1800元表示该公司员工收入的平均水平更合适些,因为平均数2700元受到了极端值的影响。结合上述问题的探究,引入中位数、众数的概念: 一般地,n个数据按大小顺序排列,处于最中间位置的一个数据(或最中间两个数据的平均数)叫做这组数据的中位数。一组数据中出现次数最多的那个数据叫做这组数据的众数。教师指出:平均数、中位数、众数都是数据的代表,它们刻画了一组数据的“平均水平”。让学生用中位数、众数的概念回头望,解释引例中小英的数学成绩的问题。目的:通过有争议的问题情境,再次
8、引起学生的认知冲突,激发学生的学习兴趣和学习热情;通过讨论交流,培养了学生的自主探索、合作交流的意识与能力,改变学生的学习方式:通过解决问题,让学生多角度地认识平均,使他们的认知冲突得到升华。注意事项:在问题的讨论中,学生从不同的角度理解问题会有不同的观点,只要学生说得有道理,教师就应给予肯定和鼓励,不可强求结论的一致性。第三环节:运用提高内容:1. 对于一组数据:3,3,2,3,6,3,10,3,6,3,2,下列说法正确的是( )A. 这组数据的众数是3;B. 这组数据的众数与中位数的数值不等;C. 这组数据的中位数与平均数的数值相等;D. 这组数据的平均数与众数的数值相等。答案:A2. 2
9、0112012 赛季北京金隅队队员身高的中位数、众数分别是多少?(课本135页) 3. 你课前所调查的50名男同学所穿运动鞋尺码的平均数、中位数、众数分别是多少?你认为学校商店应多进哪种尺码的男式运动鞋?目的: 第1、2题是基础题,考查平均数、中位数和众数的概念及求法,特别是通过第2题要使学生认识到一组数据中众数不一定只有一个。第3题既是上节课的作业题,又是本节课的“做一做”,不仅渗透了抽样调查的思想,而且让学生在具体情景中,选择恰当的数据代表对问题作出评判,培养学生的实践能力。注意事项:教师根据学生解答问题的情况,及时反馈矫正、积极评价。特别是第3题由于所选的样本不是很大,个别学生有不同看法
10、是允许的。第四环节:课堂小结内容:议一议:平均数、中位数和众数有哪些特征?学生讨论交流,师生共同总结特征:1. 用平均数作为一组数据的代表,比较可靠和稳定,它与这组数据中的每一个数都有关系,对这组数据所包含的信息的反映最为充分,因此在现实生活中较为常用,但它容易受极端值的影响。 2. 用中位数作为一组数据的代表,可靠性比较差,它不能充分利用所有数据的信息,但它不受极端值的影响,当一组数据中有个别数据变动较大时,可用它来描述这组数据的“集中趋势”。3. 用众数作为一组数据的代表,可靠性也比较差,其大小只与这组数据中的部分数据有关,但它不受极端值的影响。当一组数据中某些数据多次重复出现时,众数往往
11、是人们尤为关心的一种统计量。要根据不同的实际需要,确定是用平均数、中位数还是众数来反映数据的平均水平。目的: 通过合作交流、归纳总结,使学生体会到平均数、中位数、众数三者的差别,并能在情景中,选择恰当的数据代表对数据作出评判,培养学生的判断能力和学习能力。注意事项:在学生总结平均数、中位数和众数的特征时,最好是让他们结合具体实例来说明,这样对学生理解数据的代表的特征、恰当地运用它们作出评判颇有好处。第五环节:布置作业1. 课本习题6.3的第1,2,3题。四、教学反思思维是从问题开始的。本节课通过问题情景,启发学生思考,引起认知冲突,引导学生逐步深入地揭示新知识,应用新知识。需要注意的是:学生有自己的看法和意见,教师不可一味地否定。教师要关注学生思考问题的过程,千万不要代替学生思考,更不可强加给学生固定的思维模式。让学生在独立思考和合作交流中解决问题,发展数学应用能力。7