1、一次函数经典练习题一次函数测试题(一)一、相信你一定能填对!(每小题3分,共30分)1下列函数中,自变量x的取值范围是x2的是( ) Ay= By= Cy= Dy=2下面哪个点在函数y=x+1的图象上( ) A(2,1) B(-2,1) C(2,0) D(-2,0)3下列函数中,y是x的正比例函数的是( ) Ay=2x-1 By= Cy=2x2 Dy=-2x+14一次函数y=-5x+3的图象经过的象限是( ) A一、二、三 B二、三、四 C一、二、四 D一、三、四6若一次函数y=(3-k)x-k的图象经过第二、三、四象限,则k的取值范围是( ) Ak3 B0k3 C0k3 D0k”、“”或“”
2、)17已知直线y=x-3与y=2x+2的交点为(-5,-8),则方程组的解是_18已知一次函数y=-3x+1的图象经过点(a,1)和点(-2,b),则a=_,b=_19如果直线y=-2x+k与两坐标轴所围成的三角形面积是9,则k的值为_20如图,一次函数y=kx+b的图象经过A、B两点,与x轴交于点C,则此一次函数的解析式为_,AOC的面积为_三、认真解答,一定要细心哟!(共60分)21(14分)根据下列条件,确定函数关系式: (1)y与x成正比,且当x=9时,y=16;(2)y=kx+b的图象经过点(3,2)和点(-2,1)23(12分)一农民带了若干千克自产的土豆进城出售,为了方便,他带了
3、一些零钱备用,按市场价售出一些后,又降价出售售出土豆千克数与他手中持有的钱数(含备用零钱)的关系如图所示,结合图象回答下列问题:(1)农民自带的零钱是多少?(2)降价前他每千克土豆出售的价格是多少?(3)降价后他按每千克0.4元将剩余土豆售完,这时他手中的钱(含备用零钱)是26元,问他一共带了多少千克土豆?24(10分)如图所示的折线ABC表示从甲地向乙地打长途电话所需的电话费y(元) 与通话时间t(分钟)之间的函数关系的图象(1)写出y与t之间的函数关系式(2)通话2分钟应付通话费多少元?通话7分钟呢?25(12分)已知雅美服装厂现有A种布料70米,B种布料52米,现计划用这两种布料生产M、
4、N两种型号的时装共80套已知做一套M型号的时装需用A种布料1.1米,B种布料0.4米,可获利50元;做一套N型号的时装需用A种布料0.6米,B种布料0.9米,可获利45元设生产M型号的时装套数为x,用这批布料生产两种型号的时装所获得的总利润为y元 求y(元)与x(套)的函数关系式,并求出自变量的取值范围; 当M型号的时装为多少套时,能使该厂所获利润最大?最大利润是多? (一)答案:3B 4C 5D 6A 7C 8B 9C 10A112;y=2x 12y=3x 13y=2x+1 142 151616; 17 180;7 196 20y=x+2;421y=x;y=x+ 22y=x-2;y=8;x=
5、14235元;0.5元;45千克24当03时,y=t-0.6 2.4元;6.4元25y=50x+45(80-x)=5x+3600两种型号的时装共用A种布料1.1x+0.6(80-x)米,共用B种布料0.4x+0.9(80-x)米, 解之得40x44,而x为整数,x=40,41,42,43,44,y与x的函数关系式是y=5x+3600(x=40,41,42,43,44);y随x的增大而增大,当x=44时,y最大=3820,即生产M型号的时装44套时,该厂所获利润最大,最大利润是3820元八年级上学期第十四章一次函数单元测试班级_座号_姓名_成绩_ _一精心选一选(本大题共8道小题,每题4分,共3
6、2分)1、下列各图给出了变量x与y之间的函数是: ( )xyoAxyoBxyoDxyoC 2、下列函数中,y是x的正比例函数的是: ( )A、y=2x-1 B、y= C、y=2x2 D、y=-2x+13、已知一次函数的图象与直线y= -x+1平行,且过点(8,2),那么此一次函数的解析式为: ( )A、y=2x-14 B、y=-x-6 C、y=-x+10 D、y=4x4、点A(,)和点B(,)在同一直线上,且若,则,的关系是: ( ) A、 B、 C、 D、无法确定第5题5、若函数y=kxb的图象如图所示,那么当y0时,x的取值范围是:( ) A、 x1 B、 x2 C、 x1 D、 x0且随
7、的增大而减小,则此函数的图 象不经过( )A、第一象限 B、第二象限 C、第三象限 D、第四象限7、一次函数y=ax+b,若a+b=1,则它的图象必经过点( ) A、(-1,-1) B、(-1, 1) C、(1, -1) D、(1, 1)8、三峡工程在2003年6月1日至2003年6月10日下闸蓄水期间,水库水位由106米升至135米,高峡平湖初现人间,假设水库水位匀速上升,那么下列图象中,能正确反映这10天水位h(米)随时间t(天)变化的是: ( )二耐心填一填(本大题5小题,每小题4分,共20分)9、在函数中,自变量的取值范围是 。10、请你写出一个图象经过点(0,2),且y随x的增大而减
8、小的一次函数解析式 。11、已知直线y=x-3与y=2x+2的交点为(-5,-8),则方程组的解是_ _。12、如右图:一次函数的图象经过A、B两点,则AOC的面积为_。13、某商店出售货物时,要在进价的基础上增加一定的利润,下表体现了其数量x(个)与售价y(元)的对应关系,根据表中提供的信息可知y与x之间的关系式是_ _。数量x(个)12345售价y(元)8+0.216+0.424+0.632+0.840+1.0三、解答题(本大题5小题,每小题7分,共35分)14、已知y+2与x-1成正比例,且x=3时y=4。(1) 求y与x之间的函数关系式;(2) 当y=1时,求x的值。091630t/分
9、钟S/km401215、右图是某汽车行驶的路程S(km)与时间t(分钟) 的函数关系图。观察图中所提供的信息,解答下列问题:(1)汽车在前9分钟内的平均速度是 ;(2)汽车在中途停了多长时间? ;(3)当16t 30时,求S与t的函数关系式。16、已知,函数,试回答:(1)k为何值时,图象交x轴于点(,0)?(2)k为何值时,y随x增大而增大?17、蜡烛点燃后缩短长度y(cm)与燃烧时间x(分钟)之间的关系为,已知长为21cm的蜡烛燃烧6分钟后,蜡烛缩短了3.6cm,求: (1)y与x之间的函数解析式; (2)此蜡烛几分钟燃烧完。18、已知一次函数y=kxb的图象如图1所示。(1)写出点A、B
10、的坐标,并求出k、b 的值;(2)在所给的平面直角坐标系内画出函数y=bxk的图象。四、解答题(本大题3小题,每小题9分,共27分)19、小文家与学校相距1000米某天小文上学时忘了带一本书,走了一段时间才想起,于是返回家拿书,然后加快速度赶到学校下图是小文与家的距离(米)关于时间(分钟)的函数图象请你根据图象中给出的信息,解答下列问题: (1)小文走了多远才返回家拿书?(2)求线段所在直线的函数解析式;(3)当分钟时,求小文与家的距离。20、一次函数y=kxb的自变量的取值范围是3 x 6,相应函数值的取值范围是5y2,求这个一次函数的解析式。21、今年以来,广东大部分地区的电力紧缺,电力公
11、司为鼓励市民节约用电,采取按月用电量分段收费办法若某户居民每月应交电费y(元)与用电量x(度)的函数图像是一条折线(如图所示),根据图像解答下列问题:(1)分别写出0x100和x100时,y与x的函数关系式;(2)利用函数关系式,说明电力公司采取的收费标准;五、解答题(本大题3小题,每小题12分,共36分)22、已知:一个正比例函数和一个一次函数的图像交于点P(-2、2)且一次函数的图像与y轴的交点Q的纵坐标为4。(1)求这两个函数的解析式;(2)在同一坐标系中,分别画出这两个函数的图像;(3)求PQO的面积。23、甲、乙两家体育用品商店出售同样的乒乓球拍和乒乓球,乒乓球拍每付定价20元,乒乓
12、球每盒定价5元.现两家商店搞促销活动,甲店:每买一付球拍赠一盒乒乓球;乙店:按定价的9折优惠。某班级需购球拍4付,乒乓球若干盒(不少于4盒)。(1)设购买乒乓球盒数为x(盒),在甲店购买的付款数为y甲(元),在乙店购买的付款为y乙(元),分别写出在这两家商店购买的付款数与乒乓球盒数x之间的函数关系式;(2)就乒乓球盒数讨论去哪家商店买合算。24、如图,直线L:与x轴、y轴分别交于A、B两点,在y轴上有一点C(0,4),动点M从A点以每秒1个单位的速度沿x轴向左移动。(1)求A、B两点的坐标;(2)求COM的面积S与M的移动时间t之间的函数关系式;(3)当t何值时COMAOB,并求此时M点的坐标
13、。一次函数测试题(三)班级 姓名 得分 一. 填空(每题4分,共32分)1 已知一个正比例函数的图象经过点(-2,4),则这个正比例函数的表达式是 . 2 已知一次函数y=kx+5的图象经过点(-1,2),则k= .3 一次函数y= -2x+4的图象与x轴交点坐标是 ,与y轴交点坐标是 图象与坐标轴所围成的三角形面积是 .4 下列三个函数y= -2x, y= - x, y=(- )x共同点(1) ;(2) ;(3) .5 某种储蓄的月利率为0.15%,现存入1000元,则本息和y(元)与所存月数x之间的函数关系式是 .6.写出同时具备下列两个条件的一次函数表达式(写出一个即可) .(1)y随着
14、x的增大而减小。 (2)图象经过点(1,-3)7.某商店出售一种瓜子,其售价y(元)与瓜子质量x(千克)之间的关系如下表质量x(千克)1234售价y(元)3.60+0.207.20+0.2010.80+0.2014.40+0.2由上表得y与x之间的关系式是 .8在计算器上按照下面的程序进行操作:下表中的x与y分别是输入的6个数及相应的计算结果:x-2-10123y-5-214710上面操作程序中所按的第三个键和第四个键 应是 . 二选择题(每题4分,共32分)9下列函数(1)y=x (2)y=2x-1 (3)y= (4)y=2-1-3x (5)y=x2-1中,是一次函数的有( )(A)4个 (
15、B)3个 (C)2个 (D)1个10已知点(-4,y1),(2,y2)都在直线y=- x+2上,则y1 y2大小关系是( )(A)y1 y2 (B)y1 =y2 (C)y1 0,b0 (B)k0,b0x(cm)20520125(C)k0 (D)k0,b10)的关系式。(3)小明现有24元钱,最多可买多少个本子?7、如图8,在直标系内,一次函数的图象分别与轴、轴和直线相交于、三点,直线与轴交于点D,四边形OBCD(O是坐标原点)的面积是10,若点A的横坐标是,求这个一次函数解析式.8、一次函数,当时,函数图象有何特征?请通过不同的取值得出结论?9、某油库有一大型储油罐,在开始的8分钟内,只开进油
16、管,不开出油管,油罐的油进至24吨(原油罐没储油)后将进油管和出油管同时打开16分钟,油罐内的油从24吨增至40吨,随后又关闭进油管,只开出油管,直到将油罐内的油放完,假设在单位时间内进油管与出油管的流量分别保持不变.(1)试分别写出这一段时间内油的储油量Q(吨)与进出油的时间t(分)的函数关系式.(2)在同一坐标系中,画出这三个函数的图象.10、某市电力公司为了鼓励居民用电,采用分段计费的方法计算电费:每月不超过100度时,按每度0.57元计费;每月用电超过100度时,其中的100度按原标准收费;超过部分按每度0.50元计费.(1)设用电度时,应交电费元,当100和100时,分别写出关于的函
17、数关系式.(2)小王家第一季度交纳电费情况如下:月份一月份二月份三月份合计交费金额76元63元45元6角184元6角问小王家第一季度共用电多少度?11、某地上年度电价为0.8元,年用电量为1亿度.本年度计划将电价调至0.550.75元之间,经测算,若电价调至元,则本年度新增用电量(亿度)与(0.4)(元)成反比例,又当=0.65时,=0.8.(1)求与之间的函数关系式;(2)若每度电的成本价为0.3元,则电价调至多少时,本年度电力部门的收益将比上年度增加20%?收益=用电量(实际电价成本价)12、汽车从A站经B站后匀速开往C站,已知离开B站9分时,汽车离A站10千米,又行驶一刻钟,离A站20千米.(1)写出汽车与B站距离与B站开出时间的关系;(2)如果汽车再行驶30分,离A站多少千米?13、甲乙两个仓库要向A、B两地运送水泥,已知甲库可调出100吨水泥,乙库可调出80吨水泥,A地需70吨水泥,B地需110吨水泥,两库到A,B两地的路程和运费如下表(表中运费栏“元/(吨、千米)”表示每吨水泥运送1千米所需人民币)路程/千米运费(元/吨、千米)甲库乙库甲库乙库A地20151212B地2520108(1)设甲库运往A地水泥吨,求总运费(元)关于(吨)的函数关系式,画出它的图象(草图).(2)当甲、乙两库各运往A、B两地多少吨水泥时,总运费最省?最省的总运费是多少?