1、 一次函数经典练习题 一次函数测试题(一) 一、相信你一定能填对!(每小题3分,共30分) 1.下列函数中,自变量x的取值范围是x≥2的是( ) A.y= B.y= C.y= D.y=· 2.下面哪个点在函数y=x+1的图象上( ) A.(2,1) B.(-2,1) C.(2,0) D.(-2,0) 3.下列函数中,y是x的正比例函数的是( ) A.y=2x-1 B.y= C.y=2x2 D.y=-2x+1 4.一次函数y=-5x+3的图象经过的象限是
2、 )
A.一、二、三 B.二、三、四
C.一、二、四 D.一、三、四
6.若一次函数y=(3-k)x-k的图象经过第二、三、四象限,则k的取值范围是( )
A.k>3 B.0 3、时间t(时)的函数关系用图象表示应为下图中的( )
9.李老师骑自行车上班,最初以某一速度匀速行进,中途由于自行车发生故障,停下修车耽误了几分钟,为了按时到校,李老师加快了速度,仍保持匀速行进,如果准时到校.在课堂上,李老师请学生画出他行进的路程y(千米)与行进时间t(小时)的函数图象的示意图,同学们画出的图象如图所示,你认为正确的是( )
10.一次函数y=kx+b的图象经过点(2,-1)和(0,3),那么这个一次函数的解析式为( )
A.y=-2x+3 B.y=-3x+2 C.y=3x-2 D.y=x-3
二、你能填得又快又对吗? 4、每小题3分,共30分)
11.已知自变量为x的函数y=mx+2-m是正比例函数,则m=________,该函数的解析式为_________.
12.若点(1,3)在正比例函数y=kx的图象上,则此函数的解析式为________.
13.已知一次函数y=kx+b的图象经过点A(1,3)和B(-1,-1),则此函数的解析式为_________.
14.若解方程x+2=3x-2得x=2,则当x_________时直线y=x+2上的点在直线y=3x-2上相应点的上方.
15.已知一次函数y=-x+a与y=x+b的图象相交于点(m,8),则a+b=_________.
16.若一次函 5、数y=kx+b交于y轴的负半轴,且y的值随x的增大而减少,则k____0,b______0.(填“>”、“<”或“=”)
17.已知直线y=x-3与y=2x+2的交点为(-5,-8),则方程组的解是________.
18.已知一次函数y=-3x+1的图象经过点(a,1)和点(-2,b),则a=________,b=______.
19.如果直线y=-2x+k与两坐标轴所围成的三角形面积是9,则k的值为_____.
20.如图,一次函数y=kx+b的图象经过A、B两点,与x轴交于点C,则此一次函数的解析式为__________,△AOC的面积为_________.
6、
三、认真解答,一定要细心哟!(共60分)
21.(14分)根据下列条件,确定函数关系式:
(1)y与x成正比,且当x=9时,y=16;
(2)y=kx+b的图象经过点(3,2)和点(-2,1).
23.(12分)一农民带了若干千克自产的土豆进城出售,为了方便,他带了一些零钱备用,按市场价售出一些后,又降价出售.售出土豆千克数与他手中持有的钱数(含备用零
钱)的关系如图所示,结合图象回答下列问题:(1)农民自带的零钱是多少?
(2)降价前他每千克土豆出售的价格是多少?
(3)降价后他按每千克0.4元将剩余土豆售完,这时他手中的钱(含备用零 7、钱)是26元,问他一共带了多少千克土豆?
24.(10分)如图所示的折线ABC表示从甲地向乙地打长途电话所需的电话费y(元)
与通话时间t(分钟)之间的函数关系的图象(1)写出y与t之间的函数关系式.
(2)通话2分钟应付通话费多少元?通话7分钟呢?
25.(12分)已知雅美服装厂现有A种布料70米,B种布料52米,现计划用这两种布料生产M、N两种型号的时装共80套.已知做一套M型号的时装需用A种布料1.1米,B种布料0.4米,可获利50元;做一套N型号的时装需用A种布料0.6米,B种布料0.9米,可获利45元.设生产M型号的时装套数为 8、x,用这批布料生产两种型号的时装所获得的总利润为y元.
①求y(元)与x(套)的函数关系式,并求出自变量的取值范围;
②当M型号的时装为多少套时,能使该厂所获利润最大?最大利润是多?
(一)答案:
3.B 4.C 5.D 6.A 7.C 8.B 9.C 10.A
11.2;y=2x 12.y=3x 13.y=2x+1 14.<2 15.16
16.<;< 17. 18.0;7 19.±6 20.y=x+2;4
21.①y=x;②y=x+ 22.y=x-2;y=8;x=14
23.①5元;②0.5元;③45千克
2 9、4.①当0 10、
八年级上学期第十四章《一次函数》单元测试
班级_____________座号____________姓名_____________成绩_________ __
一.精心选一选(本大题共8道小题,每题4分,共32分)
1、下列各图给出了变量x与y之间的函数是: ( )
x
y
o
A
x
y
o
B
x
y
o
D
x
y
o
C
2、下列函数中,y是x的正比例函数的是: 11、 ( )
A、y=2x-1 B、y= C、y=2x2 D、y=-2x+1
3、已知一次函数的图象与直线y= -x+1平行,且过点(8,2),那么此一次函数的解析式为: ( )
A、y=2x-14 B、y=-x-6 C、y=-x+10 D、y=4x
4、点A(,)和点B(,)在同一直线上,且.若,则,的关系是: 12、 ( )
A、 B、 C、 D、无法确定.
第5题
5、若函数y=kx+b的图象如图所示,那么当y>0时,x的取值范围是:( ) A、 x>1 B、 x>2 C、 x<1 D、 x<2
6、一次函数y=kx+b满足kb>0且y随x的增大而减小,则此函数的图
象不经过( )
A、第一象限 B、第二象限 C、第三象限 D、第四象限
7、一次函数y=ax+b,若a+b=1,则它的图象必经 13、过点( )
A、(-1,-1) B、(-1, 1) C、(1, -1) D、(1, 1)
8、三峡工程在2003年6月1日至2003年6月10日下闸蓄水期间,水库水位由106米升至135米,高峡平湖初现人间,假设水库水位匀速上升,那么下列图象中,能正确反映这10天水位h(米)随时间t(天)变化的是: ( )
二.耐心填一填(本大题5小题,每小题4分,共20分)
9、在函数中,自变量的取值范围是 。
10、请你写出一个图象经过点(0,2),且y随 14、x的增大而减小的一次函数解析式 。
11、已知直线y=x-3与y=2x+2的交点为(-5,-8),则方程组的解是
_____ ___。
12、如右图:一次函数的图象经过A、B两点,则
△AOC的面积为___________。
13、某商店出售货物时,要在进价的基础上增加一定的利润,下表体现了其数量x(个)与售价y(元)的对应关系,根据表中提供的信息可知y与x之间的关系式是____________ ___。
数量x(个)
1
2
3
4
5
售价y(元)
8+0.2
16+0.4
24+0.6
32+0.8
40+1.0
15、
三、解答题(本大题5小题,每小题7分,共35分)
14、已知y+2与x-1成正比例,且x=3时y=4。
(1) 求y与x之间的函数关系式;
(2) 当y=1时,求x的值。
0
9
16
30
t/分钟
S/km
40
12
15、右图是某汽车行驶的路程S(km)与时间t(分钟) 的函数关系图。
观察图中所提供的信息,解答下列问题:
(1)汽车在前9分钟内的平均速度是 ;
(2)汽车在中途停了多长时间? ;
(3)当16≤t ≤30时,求S与t的函数关系式。
16、已知,函数,试回答:
(1) 16、k为何值时,图象交x轴于点(,0)?
(2)k为何值时,y随x增大而增大?
17、蜡烛点燃后缩短长度y(cm)与燃烧时间x(分钟)之间的关系为,已知长为21cm的蜡烛燃烧6分钟后,蜡烛缩短了3.6cm,求:
(1)y与x之间的函数解析式;
(2)此蜡烛几分钟燃烧完。
18、已知一次函数y=kx+b的图象如图1所示。
(1)写出点A、B的坐标,并求出k、b 的值;
(2)在所给的平面直角坐标系内画出函数y=bx+k的图象。
四、解答题(本大题3小题,每小题9分,共27分)
19、小文家与学校相距 17、1000米.某天小文上学时忘了带一本书,走了一段时间才想起,于是返回家拿书,然后加快速度赶到学校.下图是小文与家的距离(米)关于时间(分钟)的函数图象.请你根据图象中给出的信息,解答下列问题:
(1)小文走了多远才返回家拿书?
(2)求线段所在直线的函数解析式;
(3)当分钟时,求小文与家的距离。
20、一次函数y=kx+b的自变量的取值范围是-3 ≤x ≤6,相应函数值的取值范围是
-5≤y≤-2,求这个一次函数的解析式。
21、今年以来,广东大部分地区的电力紧缺,电力公司为鼓励市民节约用电,采取按 18、月用电量分段收费办法.若某户居民每月应交电费y(元)与用电量x(度)的函数图像是一条折线(如图所示),根据图像解答下列问题:
(1)分别写出0≤x≤100和x≥100时,y与x的函数关系式;
(2)利用函数关系式,说明电力公司采取的收费标准;
五、解答题(本大题3小题,每小题12分,共36分)
22、已知:一个正比例函数和一个一次函数的图像交于点P(-2、2)且一次函数的图像与y轴的交点Q的纵坐标为4。
(1)求这两个函数的解析式;
(2)在同一坐标系中,分别画出这两个函数的图像;
(3)求△PQO的面积。
23、甲、乙两家体育用品商店出售同样 19、的乒乓球拍和乒乓球,乒乓球拍每付定价20元,乒乓球每盒定价5元.现两家商店搞促销活动,甲店:每买一付球拍赠一盒乒乓球;乙店:按定价的9折优惠。某班级需购球拍4付,乒乓球若干盒(不少于4盒)。
(1)设购买乒乓球盒数为x(盒),在甲店购买的付款数为y甲(元),在乙店购买的付款为y乙(元),分别写出在这两家商店购买的付款数与乒乓球盒数x之间的函数关系式;
(2)就乒乓球盒数讨论去哪家商店买合算。
24、如图,直线L:与x轴、y轴分别交于A、B两点,在y轴上有一点
C(0,4),动点M从A点以每秒1个单位的速度沿x轴向左移动。
(1)求A、B两点的坐 20、标;
(2)求△COM的面积S与M的移动时间t之间的函数关系式;
(3)当t何值时△COM≌△AOB,并求此时M点的坐标。
一次函数测试题(三)
班级 姓名 得分
一. 填空(每题4分,共32分)
1. 已知一个正比例函数的图象经过点(-2,4),则这个正比例函数的表达式是 .
2. 已知一次函数y=kx+5的图象经过点(-1,2),则k= .
3. 一次函数y= -2x+4的图象与x轴交点坐标是 ,与y轴交点坐标是 21、
图象与坐标轴所围成的三角形面积是 .
4. 下列三个函数y= -2x, y= - x, y=(- )x共同点(1) ;
(2) ;(3) .
5. 某种储蓄的月利率为0.15%,现存入1000元,则本息和y(元)与所存月数x之间的函数关系式是 .
6.写出同时具备下列两个条件的一次函数表达式(写出一个即可) .
(1)y随着x的增大而减小。 (2)图象经 22、过点(1,-3)
7.某商店出售一种瓜子,其售价y(元)与瓜子质量x(千克)之间的关系如下表
质量x(千克)
1
2
3
4
……
售价y(元)
3.60+0.20
7.20+0.20
10.80+0.20
14.40+0.2
……
由上表得y与x之间的关系式是 .
8在计算器上按照下面的程序进行操作:
下表中的x与y分别是输入的6个数及相应的计算结果:
x
-2
-1
0
1
2
3
y
-5
-2
1
4
7
10
上面操作程序中所按的第三个键和第四个键
应是 23、 .
二.选择题(每题4分,共32分)
9.下列函数(1)y=πx (2)y=2x-1 (3)y= (4)y=2-1-3x (5)y=x2-1中,是一次函数的有( )(A)4个 (B)3个 (C)2个 (D)1个
10.已知点(-4,y1),(2,y2)都在直线y=- x+2上,则y1 y2大小关系是( )
(A)y1 >y2 (B)y1 =y2 (C)y1 24、时)的函数关系的图象是( )
20
4
h(厘米)
t(小时)
20
4
h(厘米)
t(小时)
20
4
h(厘米)
20
4
h(厘米)
t(小时)
(A) (B) (C) (D)
y
x
12.已知一次函数y=kx+b的图象如图所示,则k,b的符号是( )
(A)k>0,b>0 (B)k>0,b<0
x(cm)
20
5
20
12.5
(C)k<0,b>0 25、D)k<0,b<0
13.弹簧的长度y cm与所挂物体的质量x(kg)的关系是一次函数,图象
如右图所示,则弹簧不挂物体时的长度是( )
(A)9cm (B)10cm (C)10.5cm (D)11cm
14.若把一次函数y=2x-3,向上平移3个单位长度,得到图象解析式是( )
(A) y=2x (B) y=2x-6
(C) y=5x-3 (D)y=-x-3
15.下面函数图象不经过第二象限的为 ( )
(A) y=3x+2 26、 (B) y=3x-2 (C) y=-3x+2 (D) y=-3x-2
16.阻值为和的两个电阻,其两端电压关于电流强度的函数图象如图,则阻值( )
(A)> (B)<
(C)= (D)以上均有可能
三.解答题(第19~23题,每题6分,第24,25题,每题8分,共36分)
17.在同一坐标系中,作出函数y= -2x与y= x+1的图象.
18.已知函数y=(2m+1)x+m -3
(1)若函数图象经过原点,求m的值
(2) 若函数图象在y轴的截距为-2,求m的值
(3)若函数 27、的图象平行直线y=3x –3,求m的值
(4)若这个函数是一次函数,且y随着x的增大而减小,求m的取值范围.
19.如图是某出租车单程收费y(元)与行驶路程x(千米)之间的函数关系图象,根据图象回答下列问题
(1)当行驶8千米时,收费应为 元
(2)从图象上你能获得哪些信息?(请写出2条)
①
②
(3)求出收费y(元)与行使x( 28、千米)(x≥3)之间的函数关系式
20.为了加强公民的节水意识,合理利用水资源,各地采用价格调控手段达到节约用水的目的,某市规定如下用水收费标准:每户每月的用水量不超过6立方米时,水费按每立方米a元收费,超过6立方米时,不超过的部分每立方米仍按a元收费,超过的部分每立方米按c元收费,该市某户今年9、10月份的用水量和所交水费如下表所示:
月份
用水量(m3)
收费(元)
9
5
7.5
10
9
27
设某户每月用水量x(立方米),应交水费y(元)
(1) 求a,c的值
(2) 当x≤6,x≥6时,分别写出y于x的函数关系式
(3) 若该户11月份用水量为8立方米, 29、求该户11月份水费是多少元?
21.一农民带上若干千克自产的土豆进城出售,为了方便,他带了一些零钱备用,按市场价售出一些后,又降价出售,售出的土豆千克数与他手中持有的钱数(含备用零钱)的关系,如图所示,结合图象回答下列问题.
(1)农民自带的零钱是多少?
(2)试求降价前y与x之间的关系式
(3)由表达式你能求出降价前每千克的土豆价格是多少?
(4)降价后他按每千克0.4元将剩余土豆售完,这时他手中的钱(含备用零钱)是26元,试问他一共带了多少千克土豆?
(三)参考答案:
1 y= —2x 2、3 3、(2,0) ( 30、0,4) 4 4、都是正比例函数,都是经过二、四象限的直线,y随x的增大而减少。 5 、 y=1000+1.5x 7 y=0.2+3.60x 8、+1
二、BADDB ABA
三、18、(1)3,(2)1 (3)1 (4) 19、(1)10 (2) 略(3)y=1.2x+1.4
20、(1)a=1.8 c=5.4(2)当x≤6时,y=1.8x; 当x≥6时,y=5.4x-21.6 (3) 21.6元
21、(1)5元 (2)y=0.5x+5 (3) 0.5元/㎏,(4)40㎏
31、
一次函数难度练习
1、已知是整数,且一次函数的图象不过第二象限,则为 .
2、若直线和直线的交点坐标为,则 .
3、在同一直角坐标系内,直线与直线都经过点 .
4、当满足 时,一次函数的图象与轴交于负半轴.
5、函数,如果,那么的取值范围是 .
6、一个长,宽的矩形场地要扩建成一个正方形场地,设长增加,宽增加,则与的函数关系是 .自变量的取值范围是 .且是的 函数.
7、如图是函数的一部分图像,(1)自变量的取值 32、范围是 ;(2)当取 时,的最小值为 ;(3)在(1)中的取值范围内,随的增大而 .
8、已知函数y=(k-1)x+k2-1,当k_______时,它是一次函数,当k=_______时,它是正比例函数.
9、已知一次函数的图象经过点,且它与轴的交点和直线与轴的交点关于轴对称,那么这个一次函数的解析式为 .
10、一次函数的图象过点和两点,且,则 ,的取值范围是 .
11、一次函数的图象如图,则与的大小关系是 ,当 时,是正比例函数.
12、为 33、 时,直线与直线的交点在轴上.
13、已知直线与直线的交点在第三象限内,则的取值范围是 .
14、要使y=(m-2)xn-1+n是关于x的一次函数,n,m应满足 , .
选择题
1、图3中,表示一次函数与正比例函数、是常数,且的图象的是( )
2、直线经过一、二、四象限,则直线的图象只能是图4中的( )
3、若直线与的交点在轴上,那么等于( )
4、直线如图5,则 34、下列条件正确的是( )
5、直线经过点,,则必有( )
A.
6、如果,,则直线不通过( )
A.第一象限 B.第二象限
C.第三象限 D.第四象限
7、已知关于的一次函数在上的函数值总是正数,则的取值范围是( )
A. B. C. D.都不对
8、如图6,两直线和在同一坐标系内图象的位置可能是( )
图6
9、已知一次函数与的 35、图像都经过,且与轴分别交于点B,,则的面积为( )
A.4 B.5 C.6 D.7
10、已知直线与轴的交点在轴的正半轴,下列结论:① ;②;③;④,其中正确的个数是( )
A.1个 B.2个 C.3个 D.4个
11、已知,那么的图象一定不经过( )
A.第一象限 B.第二象限 C.第三象限 D.第四象限
12、如图7,A、B两站相距42千米,甲骑自行车匀速行驶,由A站经P处去B站,上午8时,甲位于距A站18千米处的P处,若再向前行驶15分钟,使可到达距A站22 36、千米处.设甲从P处出发小时,距A站千米,则与之间的关系可用图象表示为( )
解答题
1、已知一次函数求: (1)为何值时,随的增大而减小;
(2)分别为何值时,函数的图象与轴的交点在轴的下方?
(3)分别为何值时,函数的图象经过原点?
(4)当时,设此一次函数与轴交于A,与轴交于B,试求面积。
2、(05年中山)某自来水公司为鼓励居民节约用水,采取按月用水量收费办法,若某户居民应交水费(元)与用水量(吨)的函数关系如图所示。
0
y
x
15
20
27
39.5
(1)写 37、出与的函数关系式;
(2)若某户该月用水21吨,则应交水费多少元?
8
2
1.92
3、果农黄大伯进城卖菠萝,他先按某一价格卖出了一部分菠萝后,把剩下的菠萝全部降价卖完,卖出的菠萝的吨数和他收入的钱数(万元)的关系如图所示,结合图象回答下列问题:
(1)降价前每千克菠萝的价格是多少元?
(2)若降价后每千克菠萝的价格是1.6元,他这次卖菠萝的总收入是2万元,问他一共卖了多少吨菠萝?
4、为发展电信事业,方便用户,电信公司对移动电话采取不同的收费方式,其中,所使用的“便民卡”与“如意卡”在玉溪市范围内每月(30天)的通 38、话时间(min)与通话费y(元)的关系如图所示:
(1)分别求出通话费(便民卡)、 (如意卡)与通话时间之间的函数关系式;
(2)请帮用户计算,在一个月内使用哪一种卡便宜?
5、气温随着高度的增加而下降,下降的规律是从地面到高空11km处,每升高1 km,气温下降6℃.高于11km时,气温几乎不再变化,设地面的气温为38℃,高空中xkm的气温为y℃.
(1)当0≤x≤11时,求y与x之间的关系式?
(2)求当x=2、5、8、11时,y的值。
(3)求在离地面13 km的高空处、气温是多少度?
(4)当气温是一16℃时,问在离地面多 39、高的地方?
6、小明用的练习本可在甲、乙两个商店内买到,已知两个商店的标价都是每个练习本1元,但甲商店的优惠条件是:购买10本以上,从第11本开始按标价的70%卖;乙商店的优惠条件是:从第1本开始就按标价的85%卖.
(1)小明要买20个练习本,到哪个商店购买较省钱?
(2)写出甲、乙两个商店中,收款y(元)关于购买本数x(本)(x>10)的关系式。
(3)小明现有24元钱,最多可买多少个本子?
7、如图8,在直标系内,一次函数的图象分别与轴、轴和直线相交于、、三点,直线与轴交于点D,四边形OBC 40、D(O是坐标原点)的面积是10,若点A的横坐标是,求这个一次函数解析式.
8、一次函数,当时,函数图象有何特征?请通过不同的取值得出结论?
9、某油库有一大型储油罐,在开始的8分钟内,只开进油管,不开出油管,油罐的油进至24吨(原油罐没储油)后将进油管和出油管同时打开16分钟,油罐内的油从24吨增至40吨,随后又关闭进油管,只开出油管,直到将油罐内的油放完,假设在单位时间内进油管与出油管的流量分别保持不变.
(1)试分别写出这一段时间内油的储油量Q(吨)与进出油的时间t(分)的函数关系式.
(2)在同一坐标系中,画出这三个函数的图象.
41、
10、某市电力公司为了鼓励居民用电,采用分段计费的方法计算电费:每月不超过100度时,按每度0.57元计费;每月用电超过100度时,其中的100度按原标准收费;超过部分按每度0.50元计费.
(1)设用电度时,应交电费元,当≤100和>100时,分别写出关于的函数关系式.
(2)小王家第一季度交纳电费情况如下:
月份
一月份
二月份
三月份
合计
交费金额
76元
63元
45元6角
184元6角
问小王家第一季度共用电多少度?
11、某地上年度电价为0.8元,年用电量为1亿度.本年度计划将电价调至0.55~0 42、75元之间,经测算,若电价调至元,则本年度新增用电量(亿度)与(—0.4)(元)成反比例,又当=0.65时,=0.8.
(1)求与之间的函数关系式;
(2)若每度电的成本价为0.3元,则电价调至多少时,本年度电力部门的收益将比上年度增加20%?[收益=用电量×(实际电价-成本价)]
12、汽车从A站经B站后匀速开往C站,已知离开B站9分时,汽车离A站10千米,又行驶一刻钟,离A站20千米.(1)写出汽车与B站距离与B站开出时间的关系;(2)如果汽车再行驶30分,离A站多少千米?
13、甲乙两个仓库要向A、B两地运送水泥,已知甲库可调出100吨水泥,乙库可调出80吨水泥,A地需70吨水泥,B地需110吨水泥,两库到A,B两地的路程和运费如下表(表中运费栏“元/(吨、千米)”表示每吨水泥运送1千米所需人民币)
路程/千米
运费(元/吨、千米)
甲库
乙库
甲库
乙库
A地
20
15
12
12
B地
25
20
10
8
(1)设甲库运往A地水泥吨,求总运费(元)关于(吨)的函数关系式,画出它的图象(草图).
(2)当甲、乙两库各运往A、B两地多少吨水泥时,总运费最省?最省的总运费是多少?






