资源描述
能带理论的认识
罗照明 1302042026
摘 要:在形成分子时,原子轨道构成具有分立能级的分子轨道。晶体是由大量的原子有序堆积而成的。由原子轨道所构成的分子轨道的数量非常之大,以至于可以将所形成的分子轨道的能级看成是准连续的,即形成了能带。
引 言:能带理论[1]是研究固体中电子运动的一个主要理论基础。在二十世纪二十年代末和三十年代初期,在量子力学运动规律确定以后,它是在用量子力学研究金属电导理论的过程中开展起来的。最初的成就在于定性地阐明了晶体中电子运动的普遍性的特点。例如,在这个理论基础上,说明了固体为什么会有导体、非导体的区别;晶体中电子的平均自由程为什么会远大于原子的间距等。在这个时候半导体开始在技术上应用,能带理论正好提供了分析半导体理论问题的基础,有利地推动了半导体技术的发展。后来由于电子计算机的发展使能带论的研究从定性的普遍规律到对具体材料复杂能带的结构计算。到目前,计算材料能带结构的方法有:近自由电子近似法、包络函数法(平面波展开法)[2,9,10,13]、赝势法[3,6]、紧束缚近似——原子轨道线性组合法[4,5, 7, 8, 11]、 K.P方法[12]。人们用这些方法对量子阱[2, 8, 9,10]。 量子线[11,12,13]、量子点结构[16, 17]的材料进行了计算和分析,并取得了较好计算结果。使得对这些结构的器件的设计有所依据。并对一些器件的特性进行了合理的解释。
固体能带论指出,由于周期排列的库仑势场的祸合,半导体中的价电子状态分为导带与价带,二者又以中间的禁带(带隙)分隔开。从半导体的能带理论出发引出了非常重要的空穴的概念,半导体中电子或光电子效应最直接地由导带底和价带顶的电子、空穴行为所决定, 由此提出的P-N结及其理论己成为当今微电子发展的物理依据。半导体能带结构的具体形态与晶格结构的对称性和价键特性密切相关,不同的材料〔如Si,Ge与GaAs,InP)能带结构各异,除带隙宽度外、导带底价带顶在k空间的位置也不同,GaAs,InP等化合物材料的导带底价带顶同处于k 空间的中心位置,称为直接带隙材料,此结构电子-空穴的带间复合几率很大,并以辐射光子的形态释放能量, 由此引导人们研制了高效率的发光二极管和半导体激光器,在光电子及光子集成技术的发展中,其重要性可与微电子技术中的
晶体管相比拟。
关 键 词 :能带(Energy band)、 能带理论(Energy band theory)
试论晶体中能带产生的原因、物理实质、能带理论的基本内容、意义和作用。可以通过一个实例来理解能带理论:
实例:若一维晶体中电子在周期场中的势能为
其中a=4b,ω是常数.
(1)画出此势能曲线;
(2)求势能的平均值;
(3)求此晶体的第一个和第二个禁带宽度。
解:(1)晶体中能带产生的原因:在形成分子时,原子轨道构成具有分立能级的分子轨道。晶体是由大量的原子有序堆积而成的。由原子轨道所构成的分子轨道的数量非常之大,以至于可以将所形成的分子轨道的能级看成是准连续的,即形成了能带。由于泡利不相容原理及电子费米-狄拉克分布,导致多个相同的能级聚集在一块时由于对称与反对称波函数不一样以至能级出现分裂导致能带出现。
(2)物理实质:能带理论就是认为晶体中的电子是在整个晶体内运动的共有化电子,并且共有化电子是在晶体周期性的势场中运动;结果得到:共有化电子的本征态波函数是Bloch函数形式,能量是由准连续能级构成的许多能带。
(3)能带理论的基本内容:讨论晶体(包括金属、绝缘体和半导体的晶体)中电子的状态及其运动的一种重要的近似理论。它把晶体中每个电子的运动看成是独立的在一个等效势场中的运动,即是单电子近似的理论;对于晶体中的价电子而言,等效势场包括原子实的势场、其他价电子的平均势场和考虑电子波函数反对称而带来交换作用,是一种晶体周期性的势场。
布洛赫定理:
能带理论的出发点是固体中的电子不再束缚于个别的原子,而是在整个固体内运动,称为共有化电子,在讨论共有化电子的运动状态时假定原子实处在其平衡位置,而把原子实偏离平衡位置的影响看成微扰,对于理想晶体,原子规则排列成晶体,晶格具有周期性,因而等效势场V (r)也应具有周期性。晶体中的电子就是在一个具有晶格周期性的等效势场中运动,其波动方程为:
(1)
且有 (2)——Rn为任一晶格矢量。
布洛赫定理指出,当势场具有晶格周期性时,波动方程的解Ψ具有如下性质:
(3)
其中K为波矢量,(3)式表示当平移晶格矢量Rn时,波函数只增加位相因子eik·Rn。(3)式就是布洛赫定理。根据定理可以把波函数写成
(4)
其中u(r)具有与晶格同样的周期性,既
(5)
(4) 式表达的波函数称为布洛赫函数,它是平面波与周期函数的乘积。
一维周期场中电子运动的近自由电子近似:
这是一个一维的模型,通过这个模型的讨论,可以进一步了解在周期场中运动的电子本征态一些最基本的特点。
图1中画出了一维周期场的示意图。所谓近自由电子近似是假定周期场的起伏比较小,作为零级近似,可以用势场的平均值代替V(x)。把周期起伏[V(X)- 〕做为微扰来处理。
图1一维周期场
零级近似的波动方程为
(6)
它的解便是恒定场中自由粒子的解
(7)
上式在归一化因子中引入晶格长度L=Na,为原胞的数目,a是晶格常数(原子间距)。引入周期性边界条件可以得到k只能取下列值
(8)
很容易验证波函数满足正交归一化条件。
(9)
由于零级近似下的解为自由电子,所以称为近自由电子近似。按照一般微扰理论的结果,本征值的一级和二级修正为
(10)
(11)
波函数的一级修正为
(12)
其中微扰项
具体写出为
其中前一项,按定义就等于平均势场,因此能量的一级修正为0。
· 和都需要计算矩阵元,由于k,和k两态之间的正交关系
现在我们证明,由于V(x)的周期性,上述矩阵元服从严格的选择定则。将
按原胞划分写成
对不同的原胞n,引入积分变数
并考虑到V(x)的周期性
就可以把前式(12)写成
(13)
现在区分两种情况:
(1) ,即k,和k相差,在这种情况下,显然,(13)式中的加式内各项均为1, 因此
(14)
(2) ,在这种情况下,(13)式中的加式可用几何级数的结果写成
K,和k又可写成{见(8)式}
因此,上式中的分子
同时,分母由于 ,所以不为零,在这种情况下,矩阵元(13)恒为零。
综合以上,我们得到,如果 ,则
(15)
否则
很容易看到,上式中以Vn表示的积分实际上正是周期场V(x)的第n个傅立叶系数。
根据这个结果,波函数考虑了一级修正(12)式后可以写成:
(16)
连加式的指数函数,在x改变a的整数倍时,是不变的,这说明括号内为一周期函数。这类似于布洛赫函数的形式:可以写成一个自由粒子波函数乘上具有晶格周期性的函数。
根据(15),二级微扰能量可以写成
(17)
值得特别注意的是,当
(18)
也就是
(19)
时,趋于, n表任意一个整数,也就是说,当k为整数倍时,E (2) k趋向。很显然,该结果是没有意义的。它只说明,以上的微扰论方法,对于在(19)式附近的k是发散的,因此不适用。
(4)意义和作用:
①能带理论是现代固体电子技术的理论基础,对于微电子技术的发展起了不可估量的作用
②它曾经定性地阐明了晶体中电子运动的普遍特点,并进而说明了导体与绝缘体、半导体的区别所在,解释了晶体中电子的平均自由程问题。
③能带理论研究固体中电子运动规律的一种近似理论。固体由原子组成,原子又包括原子核和最外层电子,它们均处于不断的运动状态。为使问题简化,首先假定固体中的原子核固定不动,并按一定规律作周期性排列,然后进一步认为每个电子都是在固定的原子实周期势场及其他电子的平均势场中运动,这就把整个问题简化成单电子问题。能带理论就属这种单电子近似理论,它首先由F.布洛赫和L.-N.布里渊在解决金属的导电性问题时提出。具体的计算方法有自由电子近似法、紧束缚近似法、正交化平面波法和原胞法等。前两种方法以量子力学的微扰理论作为基础,只分别适用于原子实对电子的束缚很弱和很强的两种极端情形;后两种方法则适用于较一般的情形,应用较广。
展开阅读全文