资源描述
教学准备
1. 教学目标
1.1 知识与技能:
了解算术平方根的概念,会用根号表示正数的算术平方根,并了解算术平方根的非负性。
1.2过程与方法 :
经历算术平方根概念的形成过程,了解算术平方根的概念,会求某些正数(完全平方数)的算数平方根.
1.3 情感态度与价值观 :
通过丰富的现实情境,使学生在已有数学经验的基础上,了解数学的价值,发展“用数学”的信心。
2. 教学重点/难点
2.1 教学重点
平方根的概念.
2.2 教学难点
算术平方根的概念和求法.
3. 教学用具
4. 标签
教学过程
1 情境导入
同学们欣赏本节导图,并回答问题,学校要举行金秋美术作品比赛,小欧很高兴,他想裁出一块面积为25dm2的正方形画布,画上自己的得意之作参加比赛,这块正方形画布的边长应取多少dm?
师:请你说一说解决问题的思路.
生:上面的问题,实际上是已知一个正数的平方,求这个正数的问题。
生:因为5的平方等于25,所以这个边长是5dm.
2、导入新课:
(1)提出问题:(书P68页的问题)
你是怎样算出画框的边长等于5dm的呢?
这个问题相当于在等式x2=25中求出正数x的值.
平方根的概念:
一般地,如果一个正数x的平方等于a,即x2 =a,那么这个正数x叫做a的算术平方根.a的算术平方根记为 ,读作“根号a”,a叫做被开方数. 即:在等式x2 =a (x≥0)中,记着: x = .
规定:0的算术平方根是0. 记着:=0
师:你能根据等式:x2 =144说出144的算术平方根是多少吗?并用等式表示出来.
师:负数有算数平方根吗?为什么?
生:只有非负数才有算术平方根,算术平方根是非负的,一个数的平方不可能是负数。
3例1 求下列各数的算术平方根:
(1) 100; (2) 1; (3) ; (4) 0.0001
解:(1)因为102 =100,所以100的算术平方根是10,即
(2)因为 , 所以 的算术平方根是 即:
(3)因为 , 所以0.0001的算术平方根是0.01。即 .
师:被开方数的大小与对应的算术平方根的大小之间有什么关系呢?
观察上面的运算可知:对所有正数, 被开方数越大,对应点算术平方根也越 大
例2、下列各式是否有意义,为什么?
(1) (2) (3) (4)
解:(1)无意义;(2)有意义;(3)有意义; (4)有意义;
4 练习:
(1)判断下列说法是否正确,若不正确请改正.
①5是25的算术平方根; √
②-6是 36 的算术平方根; ×
③0的算术平方根是0 ; √
④0.01是0.1的算术平方根; ×
⑤-3是-9的算术平方根. ×
(2).算术平方根等于本身的数有_1,0__.
(3).若 ,则x=_9_.
(5).求下列各数的算术平方根.
① 25 ② ③ 0.36 ④ 0 ⑤
答案:① 5 ② ③ 0.6 ④ 0 ⑤ 4
(6)、利用平方根、立方根来解下列方程
5、探究:(课本第69页)
怎样用两个面积为1的小正方形拼成一个面积为2的大正方形?
方法1:课本中的方法,略;
方法2:
课堂小结
这节课学习了什么呢?
生:1、学习了什么是一个数的平方根?
2、正数、0、负数的平方根的规律?
3、怎么样求一个数的平方根。
数a的平方根表示方法
板书
6.2平方根
平方根概念:……
例1:---------------
解:(板演详细解题过程)…
开平方概念:…… …
展开阅读全文