收藏 分销(赏)

高考复习圆锥曲线中的离心率问题(含详细答案).doc

上传人:丰**** 文档编号:4319279 上传时间:2024-09-05 格式:DOC 页数:8 大小:457.68KB
下载 相关 举报
高考复习圆锥曲线中的离心率问题(含详细答案).doc_第1页
第1页 / 共8页
高考复习圆锥曲线中的离心率问题(含详细答案).doc_第2页
第2页 / 共8页
高考复习圆锥曲线中的离心率问题(含详细答案).doc_第3页
第3页 / 共8页
高考复习圆锥曲线中的离心率问题(含详细答案).doc_第4页
第4页 / 共8页
高考复习圆锥曲线中的离心率问题(含详细答案).doc_第5页
第5页 / 共8页
点击查看更多>>
资源描述

1、圆锥曲线中的离心率问题(答案)一、直接求出a、c,求解e已知标准方程或a、c易求时,可利用离心率公式来求解。例1. 过双曲线C:的左顶点A作斜率为1的直线,若与双曲线M的两条渐近线分别相交于点B、C,且|AB|=|BC|,则双曲线M的离心率是( )A. B. C. D. 分析:这里的,故关键是求出,即可利用定义求解。解:易知A(-1,0),则直线的方程为。直线与两条渐近线和的交点分别为B、C,又|AB|=|BC|,可解得,则故有,从而选A。二、变用公式,整体求出e例2. 已知双曲线的一条渐近线方程为,则双曲线的离心率为( )A. B. C. D. 分析:本题已知,不能直接求出a、c,可用整体代

2、入套用公式。解:由(其中k为渐近线的斜率)。这里,则,从而选A。三、第二定义法由圆锥曲线的统一定义(或称第二定义)知离心率e是动点到焦点的距离与相应准线的距离比,特别适用于条件含有焦半径的圆锥曲线问题。例3. 在给定椭圆中,过焦点且垂直于长轴的弦长为,焦点到相应准线的距离为1,则该椭圆的离心率为( )A. B. C. D. 解:由过焦点且垂直于长轴的弦又称为通径,设焦点为F,则轴,知|MF|是通径的一半,则有。由圆锥曲线统一定义,得离心率,从而选B。四. 构造a、c的齐次式,解出e根据题设条件,借助a、b、c之间的关系,构造出a、c的齐次式,进而得到关于e的方程,通过解方程得出离心率e的值,这

3、也是常用的一种方法。例4. 已知、是双曲线的两焦点,以线段F1F2为边作正,若边的中点在双曲线上,则双曲线的离心率是( )A. B. C. D. 解:如图,设的中点为P,则点P的横坐标为,由,由焦半径公式,即,得,有,解得(舍去),故选D。高考试题分析1.(2009浙江理)过双曲线的右顶点作斜率为的直线,该直线与双曲线的两条渐近线的交点分别为若,则双曲线的离心率是 ( )A B C D答案:C 【解析】对于,则直线方程为,直线与两渐近线的交点为B,C,因此2.(2009浙江文)已知椭圆的左焦点为,右顶点为,点在椭圆上,且轴, 直线交轴于点若,则椭圆的离心率是( )A B C D 【解析】对于椭

4、圆,因为,则 3.(2009山东卷理)设双曲线的一条渐近线与抛物线y=x+1 只有一个公共点,则双曲线的离心率为( ). A. B. 5 C. D.【解析】:双曲线的一条渐近线为,由方程组,消去y,得有唯一解,所以=,所以,故选D4.(2009安徽卷理)下列曲线中离心率为的是 (A) (B) (C) (D) 解析由得,选B5.(2009江西卷文)设和为双曲线()的两个焦点, 若,是正三角形的三个顶点,则双曲线的离心率为 A B C D3【解析】由有,则,故选B.6.(2009江西卷理)过椭圆()的左焦点作轴的垂线交椭圆于点,为右焦点,若,则椭圆的离心率为 A B C D 【解析】因为,再由有从

5、而可得,故选B7.(2009全国卷理)已知双曲线的右焦点为,过且斜率为的直线交于两点,若,则的离心率 (A) A B. C. D. 8. (2008福建理11)双曲线(a0,b0)的两个焦点为F1、F2,若P为其上一点,且|PF1|=2|PF2|,则双曲线离心率的取值范围为(B)A.(1,3)B.C.(3,+)D.利用第二定义及焦半径判断9.(2008湖南理8)若双曲线(a0,b0)上横坐标为的点到右焦点的距离大于它到左准线的距离,则双曲线离心率的取值范围是( B )A.(1,2) B.(2,+) C.(1,5) D. (5,+)解析:利用第二定义10.(2008江西理7)已知、是椭圆的两个焦

6、点,满足的点总在椭圆内部,则椭圆离心率的取值范围是(C)A B C D解析:满足的点总在椭圆内部,所以cb.11.(2008全国二理9)设,则双曲线的离心率的取值范围是( B )ABCD12.(2008湖南文10)双曲线的右支上存在一点,它到右焦点及左准线的距离相等,则双曲线离心率的取值范围是( C )A B C D 利用焦半径公式及,解不等式即可。13.(2007全国2理)设分别是双曲线的左、右焦点,若双曲线上存在点,使且,则双曲线的离心率为( B )ABCD解14.(07江苏理3)在平面直角坐标系中,双曲线中心在原点,焦点在轴上,一条渐近线方程为,则它的离心率为(A)A B C D(注意焦

7、点在轴上)15.(07湖南文)设分别是椭圆()的左、右焦点,是其右准线上纵坐标为(为半焦距)的点,且,则椭圆的离心率是( D )ABCD16(07北京文4)椭圆的焦点为,两条准线与轴的交点分别为,若,则该椭圆离心率的取值范围是(D)17.(2009重庆卷文)已知椭圆的左、右焦点分别为,若椭圆上存在一点使,则该椭圆的离心率的取值范围为 【答案】. 解法1,因为在中,由正弦定理得则由已知,得,即设点由焦点半径公式,得则记得由椭圆的几何性质知,整理得解得,故椭圆的离心率18.(2009湖南卷理)已知以双曲线C的两个焦点及虚轴的两个端点为原点的四边形中,有一个内角为60 ,则双曲线C的离心率为【解析】

8、连虚轴一个端点、一个焦点及原点的三角形,由条件知,这个三角形的两边直角分别是是虚半轴长,是焦半距,且一个内角是,即得,所以,所以,离心率19.(2008全国一理15)在中,若以为焦点的椭圆经过点,则该椭圆的离心率 20.(2010辽宁文数)设双曲线的一个焦点为,虚轴的一个端点为,如果直线与该双曲线的一条渐近线垂直,那么此双曲线的离心率为(A) (B) (C) (D)解析:选D.不妨设双曲线的焦点在轴上,设其方程为:,则一个焦点为一条渐近线斜率为:,直线的斜率为:,解得.21、(2010四川理数)(9)椭圆的右焦点,其右准线与轴的交点为A,在椭圆上存在点P满足线段AP的垂直平分线过点,则椭圆离心率的取值范围是(A) (B) (C) (D)解析:由题意,椭圆上存在点P,使得线段AP的垂直平分线过点,即F点到P点与A点的距离相等而|FA| , |PF|ac,ac,于是ac,ac即acc2b2acc2 又e(0,1)故e答案:D22.(2010辽宁理数)(20)(本小题满分12分)设椭圆C:的左焦点为F,过点F的直线与椭圆C相交于A,B两点,直线l的倾斜角为60o,.(I) 求椭圆C的离心率;(II) 如果|AB|=,求椭圆C的方程.解:设,由题意知0,0.()直线l的方程为 ,其中.联立得解得因为,所以.即 得离心率 . 6分()因为,所以.由得.所以,得a=3,.椭圆C的方程为. 8

展开阅读全文
部分上传会员的收益排行 01、路***(¥15400+),02、曲****(¥15300+),
03、wei****016(¥13200+),04、大***流(¥12600+),
05、Fis****915(¥4200+),06、h****i(¥4100+),
07、Q**(¥3400+),08、自******点(¥2400+),
09、h*****x(¥1400+),10、c****e(¥1100+),
11、be*****ha(¥800+),12、13********8(¥800+)。
相似文档                                   自信AI助手自信AI助手
百度文库年卡

猜你喜欢                                   自信AI导航自信AI导航
搜索标签

当前位置:首页 > 考试专区 > 高考

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2024 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服