资源描述
圆锥曲线中的离心率问题(答案)
一、直接求出a、c,求解e
已知标准方程或a、c易求时,可利用离心率公式来求解。
例1. 过双曲线C:的左顶点A作斜率为1的直线,若与双曲线M的两条渐近线分别相交于点B、C,且|AB|=|BC|,则双曲线M的离心率是( )
A. B. C. D.
分析:这里的,故关键是求出,即可利用定义求解。
解:易知A(-1,0),则直线的方程为。直线与两条渐近线和的交点分别为B、C,又|AB|=|BC|,可解得,则故有,从而选A。
二、变用公式,整体求出e
例2. 已知双曲线的一条渐近线方程为,则双曲线的离心率为( )
A. B. C. D.
分析:本题已知,不能直接求出a、c,可用整体代入套用公式。
解:由(其中k为渐近线的斜率)。这里,则,从而选A。
三、第二定义法
由圆锥曲线的统一定义(或称第二定义)知离心率e是动点到焦点的距离与相应准线的距离比,特别适用于条件含有焦半径的圆锥曲线问题。
例3. 在给定椭圆中,过焦点且垂直于长轴的弦长为,焦点到相应准线的距离为1,则该椭圆的离心率为( )
A. B. C. D.
解:由过焦点且垂直于长轴的弦又称为通径,设焦点为F,则轴,知|MF|是通径的一半,则有。由圆锥曲线统一定义,得离心率,从而选B。
四. 构造a、c的齐次式,解出e
根据题设条件,借助a、b、c之间的关系,构造出a、c的齐次式,进而得到关于e的方程,通过解方程得出离心率e的值,这也是常用的一种方法。
例4. 已知、是双曲线的两焦点,以线段F1F2为边作正,若边的中点在双曲线上,则双曲线的离心率是( )
A. B. C. D.
解:如图,设的中点为P,则点P的横坐标为,由,由焦半径公式,即,得,有,解得(舍去),故选D。
高考试题分析
1.(2009浙江理)过双曲线的右顶点作斜率为的直线,该直线与双曲线的两条渐近线的交点分别为.若,则双曲线的离心率是 ( )
A. B. C. D.
答案:C
【解析】对于,则直线方程为,直线与两渐近线的交点为B,C,,,
因此.
2.(2009浙江文)已知椭圆的左焦点为,右顶点为,点在椭圆上,且轴, 直线交轴于点.若,则椭圆的离心率是( )
A. B. C. D.
【解析】对于椭圆,因为,则
3.(2009山东卷理)设双曲线的一条渐近线与抛物线y=x+1 只有一个公共点,则双曲线的离心率为( ).
A. B. 5 C. D.
【解析】:双曲线的一条渐近线为,由方程组,消去y,得有唯一解,所以△=,
所以,,故选D
4.(2009安徽卷理)下列曲线中离心率为的是
(A) (B) (C) (D)
[解析]由得,选B
5.(2009江西卷文)设和为双曲线()的两个焦点, 若,是正三角形的三个顶点,则双曲线的离心率为
A. B. C. D.3
【解析】由有,则,故选B.
6.(2009江西卷理)过椭圆()的左焦点作轴的垂线交椭圆于点,为右焦点,若,则椭圆的离心率为
A. B. C. D.
【解析】因为,再由有从而可得,故选B
7.(2009全国卷Ⅱ理)已知双曲线的右焦点为,过且斜率为的直线交于两点,若,则的离心率 (A)
A. B. C. D.
8. (2008福建理11)双曲线(a>0,b>0)的两个焦点为F1、F2,若P为其上一点,且|PF1|=2|PF2|,则双曲线离心率的取值范围为(B)
A.(1,3) B. C.(3,+) D.
利用第二定义及焦半径判断
9.(2008湖南理8)若双曲线(a>0,b>0)上横坐标为的点到右焦点的距离大于它到左准线的距离,则双曲线离心率的取值范围是( B )
A.(1,2) B.(2,+) C.(1,5) D. (5,+)
解析:利用第二定义
10.(2008江西理7)已知、是椭圆的两个焦点,满足的点总在椭圆内部,则椭圆离心率的取值范围是(C)
A. B. C. D.
解析:满足的点总在椭圆内部,所以c<b.
11.(2008全国二理9)设,则双曲线的离心率的取值范围是( B )
A. B. C. D.
12.(2008湖南文10)双曲线的右支上存在一点,它到右焦点及左准线的距离相等,则双曲线离心率的取值范围是( C )
A. B. C. D.
利用焦半径公式及,解不等式即可。
13.(2007全国2理)设分别是双曲线的左、右焦点,若双曲线上存在点,使且,则双曲线的离心率为( B )
A. B. C. D.
解
14.(07江苏理3).在平面直角坐标系中,双曲线中心在原点,焦点在轴上,一条渐近线方程为,则它的离心率为(A)
A. B. C. D.
(注意焦点在轴上)
15.(07湖南文).设分别是椭圆()的左、右焦点,是其右准线上纵坐标为(为半焦距)的点,且,则椭圆的离心率是( D )
A. B. C. D.
16(07北京文4).椭圆的焦点为,,两条准线与轴的交点分别为,若,则该椭圆离心率的取值范围是( D )
A. B. C. D.
17.(2009重庆卷文)已知椭圆的左、右焦点分别为,若椭圆上存在一点使,则该椭圆的离心率的取值范围为 .
【答案】
. 解法1,因为在中,由正弦定理得
则由已知,得,即
设点由焦点半径公式,得则
记得由椭圆的几何性质知,整理得
解得,故椭圆的离心率
18.(2009湖南卷理)已知以双曲线C的两个焦点及虚轴的两个端点为原点的四边形中,有一个内角为60 ,则双曲线C的离心率为
【解析】连虚轴一个端点、一个焦点及原点的三角形,由条件知,这个三角形的两边直角分别是是虚半轴长,是焦半距,且一个内角是,即得,所以,所以,离心率
19.(2008全国一理15)在中,,.若以为焦点的椭圆经过点,则该椭圆的离心率 .
20.(2010辽宁文数)设双曲线的一个焦点为,虚轴的一个端点为,如果直线与该双曲线的一条渐近线垂直,那么此双曲线的离心率为
(A) (B) (C) (D)
解析:选D.不妨设双曲线的焦点在轴上,设其方程为:,
则一个焦点为
一条渐近线斜率为:,直线的斜率为:,,
,解得.
21、(2010四川理数)(9)椭圆的右焦点,其右准线与轴的交点为A,在椭圆上存在点P满足线段AP的垂直平分线过点,则椭圆离心率的取值范围是
(A) (B) (C) (D)
解析:由题意,椭圆上存在点P,使得线段AP的垂直平分线过点,
即F点到P点与A点的距离相等
而|FA|= , |PF|∈[a-c,a+c],于是∈[a-c,a+c]
即ac-c2≤b2≤ac+c2
∴Þ 又e∈(0,1)故e∈
答案:D
22.(2010辽宁理数)(20)(本小题满分12分)
设椭圆C:的左焦点为F,过点F的直线与椭圆C相交于A,B两点,直线l的倾斜角为60o,.
(I) 求椭圆C的离心率;
(II) 如果|AB|=,求椭圆C的方程.
解:
设,由题意知<0,>0.
(Ⅰ)直线l的方程为 ,其中.
联立得
解得
因为,所以.
即
得离心率 . ……6分
(Ⅱ)因为,所以.
由得.所以,得a=3,.
椭圆C的方程为.
8
展开阅读全文