收藏 分销(赏)

高二数学知识点归纳必修二.doc

上传人:精**** 文档编号:4274161 上传时间:2024-09-02 格式:DOC 页数:5 大小:27.54KB
下载 相关 举报
高二数学知识点归纳必修二.doc_第1页
第1页 / 共5页
高二数学知识点归纳必修二.doc_第2页
第2页 / 共5页
点击查看更多>>
资源描述
高二数学知识点归纳必修二 1.高二数学知识点归纳必修二 篇一   不等式   对于含有参数的一元二次不等式解的讨论   1)二次项系数:如果二次项系数含有字母,要分二次项系数是正数、零和负数三种情况进行讨论。   2)不等式对应方程的根:如果一元二次不等式对应的方程的根能够通过因式分解的方法求出来,则根据这两个根的大小进行分类讨论,这时,两个根的大小关系就是分类标准,如果一元二次不等式对应的方程根不能通过因式分解的方法求出来,则根据方程的判别式进行分类讨论。 2.高二数学知识点归纳必修二 篇二   二面角和二面角的平面角   ①二面角的定义:从一条直线出发的两个半平面所组成的图形叫做二面角,这条直线叫做二面角的棱,这两个半平面叫做二面角的面。   ②二面角的平面角:以二面角的棱上任意一点为顶点,在两个面内分别作垂直于棱的两条射线,这两条射线所成的角叫二面角的平面角。   ③直二面角:平面角是直角的二面角叫直二面角。   两相交平面如果所组成的二面角是直二面角,那么这两个平面垂直;反过来,如果两个平面垂直,那么所成的二面角为直二面角   ④求二面角的方法   定义法:在棱上选择有关点,过这个点分别在两个面内作垂直于棱的射线得到平面角   垂面法:已知二面角内一点到两个面的垂线时,过两垂线作平面与两个面的交线所成的角为二面角的平面角 3.高二数学知识点归纳必修二 篇三   空间中的平行问题   (1)直线与平面平行的判定及其性质   线面平行的判定定理:平面外一条直线与此平面内一条直线平行,则该直线与此平面平行。   线线平行线面平行   线面平行的性质定理:如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行。线面平行线线平行   (2)平面与平面平行的判定及其性质   两个平面平行的判定定理   (1)如果一个平面内的两条相交直线都平行于另一个平面,那么这两个平面平行   (线面平行→面面平行),   (2)如果在两个平面内,各有两组相交直线对应平行,那么这两个平面平行。   (线线平行→面面平行),   (3)垂直于同一条直线的两个平面平行,   两个平面平行的性质定理   (1)如果两个平面平行,那么某一个平面内的直线与另一个平面平行。(面面平行→线面平行)   (2)如果两个平行平面都和第三个平面相交,那么它们的交线平行。(面面平行→线线平行) 4.高二数学知识点归纳必修二 篇四   概率性质与公式   (1)加法公式:P(A+B)=p(A)+P(B)-P(AB),特别地,如果A与B互不相容,则P(A+B)=P(A)+P(B);   (2)差:P(A-B)=P(A)-P(AB),特别地,如果B包含于A,则P(A-B)=P(A)-P(B);   (3)乘法公式:P(AB)=P(A)P(B|A)或P(AB)=P(A|B)P(B),特别地,如果A与B相互独立,则P(AB)=P(A)P(B);   (4)全概率公式:P(B)=∑P(Ai)P(B|Ai).它是由因求果,   贝叶斯公式:P(Aj|B)=P(Aj)P(B|Aj)/∑P(Ai)P(B|Ai).它是由果索因;   如果一个事件B可以在多种情形(原因)A1,A2,....,An下发生,则用全概率公式求B发生的概率;如果事件B已经发生,要求它是由Aj引起的概率,则用贝叶斯公式.   (5)二项概率公式:Pn(k(f(x)≠0);   (4)若所给函数的解析式较为复杂,应先化简,再判断其奇偶性;   (5)奇函数在对称的单调区间内有相同的单调性;偶函数在对称的单调区间内有相反的单调性;   2.复合函数的有关问题   (1)复合函数定义域求法:若已知的定义域为[a,b],其复合函数f[g(x)]的定义域由不等式a≤g(x)≤b解出即可;若已知f[g(x)]的定义域为[a,b],求f(x)的定义域,相当于x∈[a,b]时,求g(x)的值域(即f(x)的定义域);研究函数的问题一定要注意定义域优先的原则。   (2)复合函数的单调性由“同增异减”判定;   3.函数图像(或方程曲线的对称性)   (1)证明函数图像的对称性,即证明图像上任意点关于对称中心(对称轴)的对称点仍在图像上;   (2)证明图像C1与C2的对称性,即证明C1上任意点关于对称中心(对称轴)的对称点仍在C2上,反之亦然;   (3)曲线C1:f(x,y)=0,关于y=x+a(y=-x+a)的对称曲线C2的方程为f(y-a,x+a)=0(或f(-y+a,-x+a)=0);   (4)曲线C1:f(x,y)=0关于点(a,b)的对称曲线C2方程为:f(2a-x,2b-y)=0;   (5)若函数y=f(x)对x∈R时,f(a+x)=f(a-x)恒成立,则y=f(x)图像关于直线x=a对称,   (6)函数y=f(x-a)与y=f(b-x)的图像关于直线x=对称
展开阅读全文

开通  VIP会员、SVIP会员  优惠大
下载10份以上建议开通VIP会员
下载20份以上建议开通SVIP会员


开通VIP      成为共赢上传
相似文档                                   自信AI助手自信AI助手

当前位置:首页 > 教育专区 > 其他

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4009-655-100  投诉/维权电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服