收藏 分销(赏)

高一数学下学期知识点笔记.doc

上传人:a199****6536 文档编号:4274158 上传时间:2024-09-02 格式:DOC 页数:7 大小:30.04KB
下载 相关 举报
高一数学下学期知识点笔记.doc_第1页
第1页 / 共7页
高一数学下学期知识点笔记.doc_第2页
第2页 / 共7页
高一数学下学期知识点笔记.doc_第3页
第3页 / 共7页
高一数学下学期知识点笔记.doc_第4页
第4页 / 共7页
高一数学下学期知识点笔记.doc_第5页
第5页 / 共7页
点击查看更多>>
资源描述

1、高一数学下学期知识点笔记1.高一数学下学期知识点笔记 篇一1.函数的奇偶性(1)若f(x)是偶函数,那么f(x)=f(-x);(2)若f(x)是奇函数,0在其定义域内,则f(0)=0(可用于求参数);(3)判断函数奇偶性可用定义的等价形式:f(x)f(-x)=0或(f(x)0);(4)若所给函数的解析式较为复杂,应先化简,再判断其奇偶性;(5)奇函数在对称的单调区间内有相同的单调性;偶函数在对称的单调区间内有相反的单调性;2.复合函数的有关问题(1)复合函数定义域求法:若已知的定义域为a,b,其复合函数fg(x)的定义域由不等式ag(x)b解出即可;若已知fg(x)的定义域为a,b,求f(x)

2、的定义域,相当于xa,b时,求g(x)的值域(即f(x)的定义域);研究函数的问题一定要注意定义域优先的原则。(2)复合函数的单调性由“同增异减”判定;3.函数图像(或方程曲线的对称性)(1)证明函数图像的对称性,即证明图像上任意点关于对称中心(对称轴)的对称点仍在图像上;(2)证明图像C1与C2的对称性,即证明C1上任意点关于对称中心(对称轴)的对称点仍在C2上,反之亦然;(3)曲线C1:f(x,y)=0,关于y=x+a(y=-x+a)的对称曲线C2的方程为f(y-a,x+a)=0(或f(-y+a,-x+a)=0);(4)曲线C1:f(x,y)=0关于点(a,b)的对称曲线C2方程为:f(2

3、a-x,2b-y)=0;(5)若函数y=f(x)对xR时,f(a+x)=f(a-x)恒成立,则y=f(x)图像关于直线x=a对称,高中数学;(6)函数y=f(x-a)与y=f(b-x)的图像关于直线x=对称。2.高一数学下学期知识点笔记 篇二定义:x轴正向与直线向上方向之间所成的角叫直线的倾斜角。特别地,当直线与x轴平行或重合时,我们规定它的倾斜角为0度。范围:倾斜角的取值范围是0理解:(1)注意“两个方向”:直线向上的方向、x轴的正方向;(2)规定当直线和x轴平行或重合时,它的倾斜角为0度。意义:直线的倾斜角,体现了直线对x轴正向的倾斜程度;在平面直角坐标系中,每一条直线都有一个确定的倾斜角

4、;倾斜角相同,未必表示同一条直线。公式:k=tank0时(0,90)kk=0时=0当=90时k不存在ax+by+c=0(a0)倾斜角为A,则tanA=-a/b,A=arctan(-a/b)当a0时,倾斜角为90度,即与X轴垂直3.高一数学下学期知识点笔记 篇三复数定义我们把形如a+bi(a,b均为实数)的数称为复数,其中a称为实部,b称为虚部,i称为虚数单位。当虚部等于零时,这个复数可以视为实数;当z的虚部不等于零时,实部等于零时,常称z为纯虚数。复数域是实数域的代数闭包,也即任何复系数多项式在复数域中总有根。复数表达式虚数是与任何事物没有联系的,是绝对的,所以符合的表达式为:a=a+ia为实

5、部,i为虚部复数运算法则加法法则:(a+bi)+(c+di)=(a+c)+(b+d)i;减法法则:(a+bi)-(c+di)=(a-c)+(b-d)i;乘法法则:(a+bi)(c+di)=(ac-bd)+(bc+ad)i;除法法则:(a+bi)/(c+di)=(ac+bd)/(c2+d2)+(bc-ad)/(c2+d2)i.例如:(a+bi)+(c+di)-(a+c)+(b+d)i=0,最终结果还是0,也就在数字中没有复数的存在。(a+bi)+(c+di)-(a+c)+(b+d)i=z是一个函数。复数与几何几何形式复数z=a+bi被复平面上的点z(a,b)确定。这种形式使复数的问题可以借助图形

6、来研究。也可反过来用复数的理论解决一些几何问题。向量形式复数z=a+bi用一个以原点O(0,0)为起点,点Z(a,b)为终点的向量OZ表示。这种形式使复数四则运算得到恰当的几何解释。三角形式复数z=a+bi化为三角形式4.高一数学下学期知识点笔记 篇四空间几何体表面积体积公式:1、圆柱体:表面积:2Rr+2Rh体积:R2h(R为圆柱体上下底圆半径,h为圆柱体高)2、圆锥体:表面积:R2+R(h2+R2)的体积:R2h/3(r为圆锥体低圆半径,h为其高,3、a-边长,S=6a2,V=a34、长方体a-长,b-宽,c-高S=2(ab+ac+bc)V=abc5、棱柱S-h-高V=Sh6、棱锥S-h-

7、高V=Sh/37、S1和S2-上、下h-高V=hS1+S2+(S1S2)/2/38、S1-上底面积,S2-下底面积,S0-中h-高,V=h(S1+S2+4S0)/69、圆柱r-底半径,h-高,C底面周长S底底面积,S侧,S表表面积C=2rS底=r2,S侧=Ch,S表=Ch+2S底,V=S底h=r2h10、空心圆柱R-外圆半径,r-内圆半径h-高V=h(R-r)11、r-底半径h-高V=rh/312、r-上底半径,R-下底半径,h-高V=h(R2+Rr+r2)/313、球r-半径d-直径V=4/3r=d/614、球缺h-球缺高,r-球半径,a-球缺底半径V=h(3a2+h2)/6=h2(3r-h

8、)/315、球台r1和r2-球台上、下底半径h-高V=h3(r12+r22)+h2/616、圆环体R-环体半径D-环体直径r-环体截面半径d-环体截面直径V=22Rr2=2Dd2/417、桶状体D-桶腹直径d-桶底直径h-桶高V=h(2D2+d2)/12,(母线是圆弧形,圆心是桶的中心)V=h(2D2+Dd+3d2/4)/15(母线是抛物线形)5.高一数学下学期知识点笔记 篇五函数最值及性质的应用1、函数的最值a利用二次函数的性质(配方法)求函数的(小)值b利用图象求函数的(小)值c利用函数单调性的判断函数的(小)值:如果函数y=f(x)在区间a,b上单调递增,在区间b,c上单调递减则函数y=f(x)在x=b处有值f(b);如果函数y=f(x)在区间a,b上单调递减,在区间b,c上单调递增则函数y=f(x)在x=b处有最小值f(b);2、函数的奇偶性与单调性奇函数在关于原点对称的区间上有相同的单调性;偶函数在关于原点对称的区间上有相反的单调性。3、判断含糊单调性时也可以用作商法,过程与作差法类似,区别在于作差法是与0作比较,作商法是与1作比较。4、绝对值函数求最值,先分段,再通过各段的单调性,或图像求最值。5、在判断函数的奇偶性时候,若已知是奇函数可以直接用f(0)=0,但是f(0)=0并不一定可以判断函数为奇函数。(高一阶段可以利用奇函数f(0)=0)。

展开阅读全文
部分上传会员的收益排行 01、路***(¥15400+),02、曲****(¥15300+),
03、wei****016(¥13200+),04、大***流(¥12600+),
05、Fis****915(¥4200+),06、h****i(¥4100+),
07、Q**(¥3400+),08、自******点(¥2400+),
09、h*****x(¥1400+),10、c****e(¥1100+),
11、be*****ha(¥800+),12、13********8(¥800+)。
相似文档                                   自信AI助手自信AI助手
搜索标签

当前位置:首页 > 教育专区 > 其他

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服