收藏 分销(赏)

高一数学下学期知识点笔记.doc

上传人:a199****6536 文档编号:4274158 上传时间:2024-09-02 格式:DOC 页数:7 大小:30.04KB
下载 相关 举报
高一数学下学期知识点笔记.doc_第1页
第1页 / 共7页
高一数学下学期知识点笔记.doc_第2页
第2页 / 共7页
点击查看更多>>
资源描述
高一数学下学期知识点笔记 1.高一数学下学期知识点笔记 篇一   1.函数的奇偶性   (1)若f(x)是偶函数,那么f(x)=f(-x);   (2)若f(x)是奇函数,0在其定义域内,则f(0)=0(可用于求参数);   (3)判断函数奇偶性可用定义的等价形式:f(x)±f(-x)=0或(f(x)≠0);   (4)若所给函数的解析式较为复杂,应先化简,再判断其奇偶性;   (5)奇函数在对称的单调区间内有相同的单调性;偶函数在对称的单调区间内有相反的单调性;   2.复合函数的有关问题   (1)复合函数定义域求法:若已知的定义域为[a,b],其复合函数f[g(x)]的定义域由不等式a≤g(x)≤b解出即可;若已知f[g(x)]的定义域为[a,b],求f(x)的定义域,相当于x∈[a,b]时,求g(x)的值域(即f(x)的定义域);研究函数的问题一定要注意定义域优先的原则。   (2)复合函数的单调性由“同增异减”判定;   3.函数图像(或方程曲线的对称性)   (1)证明函数图像的对称性,即证明图像上任意点关于对称中心(对称轴)的对称点仍在图像上;   (2)证明图像C1与C2的对称性,即证明C1上任意点关于对称中心(对称轴)的对称点仍在C2上,反之亦然;   (3)曲线C1:f(x,y)=0,关于y=x+a(y=-x+a)的对称曲线C2的方程为f(y-a,x+a)=0(或f(-y+a,-x+a)=0);   (4)曲线C1:f(x,y)=0关于点(a,b)的对称曲线C2方程为:f(2a-x,2b-y)=0;   (5)若函数y=f(x)对x∈R时,f(a+x)=f(a-x)恒成立,则y=f(x)图像关于直线x=a对称,高中数学;   (6)函数y=f(x-a)与y=f(b-x)的图像关于直线x=对称。 2.高一数学下学期知识点笔记 篇二   定义:   x轴正向与直线向上方向之间所成的角叫直线的倾斜角。特别地,当直线与x轴平行或重合时,我们规定它的倾斜角为0度。   范围:   倾斜角的取值范围是0°≤α  理解:   (1)注意“两个方向”:直线向上的方向、x轴的正方向;   (2)规定当直线和x轴平行或重合时,它的倾斜角为0度。   意义:   ①直线的倾斜角,体现了直线对x轴正向的倾斜程度;   ②在平面直角坐标系中,每一条直线都有一个确定的倾斜角;   ③倾斜角相同,未必表示同一条直线。   公式:   k=tanα   k>0时α∈(0°,90°)   k  k=0时α=0°   当α=90°时k不存在   ax+by+c=0(a≠0)倾斜角为A,则tanA=-a/b,A=arctan(-a/b)当a≠0时,倾斜角为90度,即与X轴垂直 3.高一数学下学期知识点笔记 篇三   复数定义   我们把形如a+bi(a,b均为实数)的数称为复数,其中a称为实部,b称为虚部,i称为虚数单位。当虚部等于零时,这个复数可以视为实数;当z的虚部不等于零时,实部等于零时,常称z为纯虚数。复数域是实数域的代数闭包,也即任何复系数多项式在复数域中总有根。   复数表达式   虚数是与任何事物没有联系的,是绝对的,所以符合的表达式为:   a=a+ia为实部,i为虚部   复数运算法则   加法法则:(a+bi)+(c+di)=(a+c)+(b+d)i;   减法法则:(a+bi)-(c+di)=(a-c)+(b-d)i;   乘法法则:(a+bi)·(c+di)=(ac-bd)+(bc+ad)i;   除法法则:(a+bi)/(c+di)=[(ac+bd)/(c2+d2)]+[(bc-ad)/(c2+d2)]i.   例如:[(a+bi)+(c+di)]-[(a+c)+(b+d)i]=0,最终结果还是0,也就在数字中没有复数的存在。[(a+bi)+(c+di)]-[(a+c)+(b+d)i]=z是一个函数。   复数与几何   ①几何形式   复数z=a+bi被复平面上的点z(a,b)确定。这种形式使复数的问题可以借助图形来研究。也可反过来用复数的理论解决一些几何问题。   ②向量形式   复数z=a+bi用一个以原点O(0,0)为起点,点Z(a,b)为终点的向量OZ表示。这种形式使复数四则运算得到恰当的几何解释。   ③三角形式   复数z=a+bi化为三角形式 4.高一数学下学期知识点笔记 篇四   空间几何体表面积体积公式:   1、圆柱体:表面积:2πRr+2πRh体积:πR2h(R为圆柱体上下底圆半径,h为圆柱体高)   2、圆锥体:表面积:πR2+πR[(h2+R2)的]体积:πR2h/3(r为圆锥体低圆半径,h为其高,   3、a-边长,S=6a2,V=a3   4、长方体a-长,b-宽,c-高S=2(ab+ac+bc)V=abc   5、棱柱S-h-高V=Sh   6、棱锥S-h-高V=Sh/3   7、S1和S2-上、下h-高V=h[S1+S2+(S1S2)/2]/3   8、S1-上底面积,S2-下底面积,S0-中h-高,V=h(S1+S2+4S0)/6   9、圆柱r-底半径,h-高,C—底面周长S底—底面积,S侧—,S表—表面积C=2πrS底=πr2,S侧=Ch,S表=Ch+2S底,V=S底h=πr2h   10、空心圆柱R-外圆半径,r-内圆半径h-高V=πh(R-r)   11、r-底半径h-高V=πrh/3   12、r-上底半径,R-下底半径,h-高V=πh(R2+Rr+r2)/313、球r-半径d-直径V=4/3πr=πd/6   14、球缺h-球缺高,r-球半径,a-球缺底半径V=πh(3a2+h2)/6=πh2(3r-h)/3   15、球台r1和r2-球台上、下底半径h-高V=πh[3(r12+r22)+h2]/6   16、圆环体R-环体半径D-环体直径r-环体截面半径d-环体截面直径V=2π2Rr2=π2Dd2/4   17、桶状体D-桶腹直径d-桶底直径h-桶高V=πh(2D2+d2)/12,(母线是圆弧形,圆心是桶的中心)V=πh(2D2+Dd+3d2/4)/15(母线是抛物线形) 5.高一数学下学期知识点笔记 篇五   函数最值及性质的应用   1、函数的最值   a利用二次函数的性质(配方法)求函数的(小)值   b利用图象求函数的(小)值   c利用函数单调性的判断函数的(小)值:   如果函数y=f(x)在区间[a,b]上单调递增,在区间[b,c]上单调递减则函数y=f(x)在x=b处有值f(b);   如果函数y=f(x)在区间[a,b]上单调递减,在区间[b,c]上单调递增则函数y=f(x)在x=b处有最小值f(b);   2、函数的奇偶性与单调性   奇函数在关于原点对称的区间上有相同的单调性;   偶函数在关于原点对称的区间上有相反的单调性。   3、判断含糊单调性时也可以用作商法,过程与作差法类似,区别在于作差法是与0作比较,作商法是与1作比较。   4、绝对值函数求最值,先分段,再通过各段的单调性,或图像求最值。   5、在判断函数的奇偶性时候,若已知是奇函数可以直接用f(0)=0,但是f(0)=0并不一定可以判断函数为奇函数。(高一阶段可以利用奇函数f(0)=0)。
展开阅读全文

开通  VIP会员、SVIP会员  优惠大
下载10份以上建议开通VIP会员
下载20份以上建议开通SVIP会员


开通VIP      成为共赢上传
相似文档                                   自信AI助手自信AI助手

当前位置:首页 > 教育专区 > 其他

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4009-655-100  投诉/维权电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服