收藏 分销(赏)

福建专版2020中考数学复习方案单元测试01.docx

上传人:可**** 文档编号:4198698 上传时间:2024-08-21 格式:DOCX 页数:6 大小:735.94KB 下载积分:10 金币
下载 相关 举报
福建专版2020中考数学复习方案单元测试01.docx_第1页
第1页 / 共6页
福建专版2020中考数学复习方案单元测试01.docx_第2页
第2页 / 共6页


点击查看更多>>
资源描述
单元测试(一) 范围:数与式 限时:45分钟 满分:100分 一、 选择题(每小题3分,共30分) 1.下列四个实数中,最小的是 (  ) A.-2 B.-5 C.1 D.4 2.在下列实数:π2,3,4,227,-1.010010001…(每相邻两个1之间依次多一个0)中,无理数有(  ) A.1个 B.2个 C.3个 D.4个 3.一个整数815550…0用科学记数法表示为8.1555×1010,则原数中0的个数为 (  ) A.4 B.6 C.7 D.10 4.计算a3·(a3)2的结果是 (  ) A.a8 B.a9 C.a11 D.a18 5.实数a,b,c在数轴上的对应点的位置如图D1-1所示,则正确的结论是 (  ) 图D1-1 A.|a|>4 B.c-b>0 C.ac>0 D.a+c>0 6.下列各式化简结果为无理数的是 (  ) A.3-27 B.(2-1)0 C.8 D.(-2)2 7.已知a-b=3,a2+b2=5,则ab等于 (  ) A.2 B.1 C.-2 D.-1 8.化简1-2x-1x2÷1-1x2的结果为 (  ) A.x-1x+1 B.x+1x-1 C.x+1x D.x-1x 9.如图D1-2,将边长为3a的正方形沿虚线剪成两块正方形和两块长方形.若拿掉边长为2b的小正方形后,再将剩下的三块拼成一块矩形,则这块矩形较长的边长为 (  )    图D1-2 A.3a+2b B.3a+4b C.6a+2b D.6a+4b 10.某校建立了一个身份识别系统,图D1-3是某个学生的识别图案,黑色小正方形表示1,白色小正方形表示0.将第一行数字从左到右依次记为a,b,c,d,那么可以转换为该生所在班级序号,其序号为a×23+b×22+c×21+d×20.如图D1-3,第一行数字从左到右依次为0,1,0,1,序号为0×23+1×22+0×21+1×20=5,表示该生为5班学生.表示6班学生的识别图案是(  ) 图D1-3 图D1-4 二、 填空题(每小题3分,共18分) 11.计算:(32+1)×(32-1)=    .  12.已知数轴上的两个数-3与a,并且a>-3,它们之间的距离可以表示为    .  13.如图D1-5,数轴上点A表示的实数是    .  图D1-5 14.已知实数m,n满足|n-2|+m+1=0,则m+2n的值为    .  15.多项式x2+mx+5因式分解得(x+5)(x+n),则mn=    .  16.已知a6=b5=c4,且a+b-2c=6,则a的值为    .  三、 解答题(共52分) 17.(6分)计算:27+-12-2-3tan60°+π-20. 18.(6分)先化简,再求值:(2x+y)2+(x-y)(x+y)-5x(x-y),其中x=2+1,y=2-1. 19.(8分)先化简,再求值:1-5x+2÷x2-6x+9x+2,其中x=2+3. 20.(10分)已知T=a2-9a(a+3)2+6a(a+3). (1)化简T; (2)若正方形ABCD的边长为a,且它的面积为9,求T的值. 21.(10分)嘉淇准备完成题目: 化简:( x2+6x+8)-(6x+5x2+2). 发现系数“ ”印刷不清楚. (1)她把“ ”猜成3,请你化简:(3x2+6x+8)-(6x+5x2+2); (2)她妈妈说:“你猜错了,我看到该题标准答案的结果是常数.”通过计算说明原题中“ ”是几. 22.(12分)如图D1-6,用三个正方形①,2个正方形②,1个正方形③和缺了一个角的长方形④,恰好拼成一个大长方形.根据图示数据,解答下列问题: (1)用含x的代数式表示:a=    cm,b=    cm;  (2)用含x的代数式表示大长方形的周长,并求x=3时大长方形的周长. 图D1-6 【参考答案】 1.B 2.C 3.B 4.B 5.B 6.C [解析]A中3-27=-3,是有理数;B中(2-1)0=1,是有理数;C中8=22,是无理数;D中(-2)2=2,是有理数,故选C. 7.C 8.A 9.A 10.B [解析]A.1×23+0×22+1×21+0×20=10; B.0×23+1×22+1×21+0×20=6; C.1×23+0×22+0×21+1×20=9; D.0×23+1×22+1×21+1×20=7. 只有选项B表示6班, 故选B. 11.17 12.a+3  13.5-1 14.3 [解析]已知等式是两个非负数的和等于0,由非负数的性质,得n-2=0,m+1=0,解得m=-1,n=2,所以m+2n=-1+2×2=3. 15.6 [解析]将(x+5)(x+n)展开,得到x2+(n+5)x+5n,使x2+(n+5)x+5n与x2+mx+5的各项系数对应相等即可得出m,n的值. 16.12 [解析]设a6=b5=c4=k,则a=6k,b=5k,c=4k,∵a+b-2c=6,∴6k+5k-8k=6,3k=6,解得k=2,∴a=6k=12. 17.解:原式=33+4-33+1=5. 18.解:(2x+y)2+(x-y)(x+y)-5x(x-y)=4x2+4xy+y2+x2-y2-5x2+5xy=9xy, 当x=2+1,y=2-1时, 原式=9×(2+1)×(2-1) =9×(2-1) =9×1 =9. 19.解:原式=x+2x+2-5x+2·x+2(x-3)2 =x-3x+2·x+2(x-3)2 =1x-3, 当x=2+3时,原式=12+3-3=22. 20.解:(1)T=a2-9a(a+3)2+6a(a+3)=(a+3)(a-3)a(a+3)2+6a(a+3)=a-3a(a+3)+6a(a+3)=a+3a(a+3)=1a. (2)∵正方形ABCD的边长为a,且它的面积a2=9, ∴a=3(a=-3舍去),∴T=1a=13. 21.解:(1)(3x2+6x+8)-(6x+5x2+2)=3x2+6x+8-6x-5x2-2=-2x2+6. (2)( x2+6x+8)-(6x+5x2+2)=( -5)x2+6. ∵最终结果是常数, ∴ =5. 22.解:(1)(x+2) (2x+2) (2)大长方形的周长为2(3x+2a+a+b)=2(3x+3a+b)=2[3x+3(x+2)+2x+2]=2(8x+8)=16x+16. 当x=3时,大长方形的周长为16×3+16=64(cm). 6
展开阅读全文

开通  VIP会员、SVIP会员  优惠大
下载10份以上建议开通VIP会员
下载20份以上建议开通SVIP会员


开通VIP      成为共赢上传

当前位置:首页 > 考试专区 > 中考

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4009-655-100  投诉/维权电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服