1、应用数学MATHEMATICA APPLICATA2024,37(2):540-546具有两个m-凸绝缘体和超导体内含物的电导问题的梯度估计包圆,马飞遥(宁波大学数学与统计学院,浙江 宁波 315211)摘要:本文研究复合材料中的一个内含物的电导率为超导,另一个内含物的电导率为绝缘情况下的电导率问题的梯度估计.本文将内含物的形状从2-凸推广到更一般的情形,得到了当内含物的形状为m-凸(m 2)时解的梯度的上界.关键词:电导率问题;梯度估计;超导;绝缘;m-凸中图分类号:O175.2AMS(2010)主题分类:35J25;74E30文献标识码:A文章编号:1001-9847(2024)02-05
2、40-071.引言由于电导率问题可以作为多种物理现象的数学模型,这一类问题成为了科学和工程领域的一个重要课题,相关的理论已经得到了广泛的研究,并取得了很多研究成果13,712.本文在包含两个内含物的复合材料中研究电导率问题,用边界为C2,(0 0,有?aij?C(e),aij(x)ij|2,Rn,x e.2.预备知识及引理在证明本文的结果之前,我们需要引入一些符号.设x=(x,xn)(x Rn1),通过选取合适的坐标系,我们定义D1和D2之间的狭窄区域如下:r:=(x,xn)e|2+g(x)xn2+f(x),|x|r.令+=r D1=xn=2+f(x),|x|r,=r D2=xn=2+g(x)
3、,|x|r,其中f,g C2,().于是本文可以利用函数f和g来刻画内含物的m-凸性,即对于任意的0|x|0.(2.3)定义检验函数 C满足|3=0,其中3=r(+).因此在狭窄区域r上有下式成立:0=ri(aijju)=raijju(x)i+aijju(x)i+aijju(x)i+3aijju(x)i=raijju(x)i+aijju(x)i.从而方程(1.1)的弱形式可以写成raijju(x)i+aijju(x)i=0,C,|3=0,u=C,在+(r)上,aijju(x)i=0,在(r)上.(2.4)542应用数学2024为了处理上界估计中最重要的一步,本文在狭窄区域上引入“翻转延拓”技巧
4、.对任意的 k Z,令Qk:=(z,zn)Rn|z|1,(2k 1)zn(2k+1),并且定义区域Qk的边界如下:k+:=(z,zn)Rn|z|1,zn=(2k+1),(2.5)k:=(z,zn)Rn|z|1,zn=(2k 1),以及k3=Qk(k k+).于是在区域Q0上,方程(2.4)可以写成下列形式:Q0bijzjwzi+0+bnjzjw=0,C(Q0),?03=0,w=C1,在 0+上,bnjzjw=0,在 0上,(2.6)其中bij(z)C(Q0)(0 0 使得?bij(z)?C(Q0)1,bij(z)ij 1|2,Rn,z Q0.(2.7)引理15设w H1(Q0)L(Q0)是方程
5、(2.6)的一个弱解,那么存在只依赖于n,1,1的常数C 0,使得wL(Q0(12)CwL(Q0),其中Q0(12):=z Rn?|z|12,|zn|.证定义Q:=z Rn?|z|1,1 zn 1.考虑Q上的一个奇偶交错延拓,将w延拓为e w,即对k Z有e w(z)=w2k+1(z,zn)=2w2k(z,(4l+1)w2k(z,2(4l+1)zn),k 0;w2k+2(z,zn)=w2k+1(z,2(4l+3)zn),k 0;w2k1(z,zn)=w2k(z,2(4l 1)zn),k 0;w2k2(z,zn)=2w2k1(z,(4l 3)w2k1(z,2(4l 3)zn),k 0.(2.8)
6、通过上述奇偶交错延拓,可知e w可被区域Q上的解w0迭代定义,并满足下列椭圆方程:Qkbijzje wzi+k1bnjzje w=0,C(Qk),?k3=0,e w=C1,在 k+上,bnjzje w=0,在 k上.我们定义该方程对应的椭圆系数bij(z)=bij2k+1(z,zn)=2bij2k(z,(4k+1)bij2k(z,2(4k+1)zn),k 0;bij2l+2(z,zn)=bij2k+1(z,2(4k+3)zn),k 0;bij2l1(z,zn)=bij2k(z,2(4k 1)zn),k 0;bij2l2(z,zn)=2bij2k1(z,(4k 3)bij2l1(z,2(4k 3
7、)zn),k 0.由式(2.5),我们可得2k+=z Rn|z|1,zn=(1+4k),k Z,第 2 期包圆等:具有两个m-凸绝缘体和超导体内含物的电导问题的梯度估计5432k+1+=z Rn|z|1,zn=(1+4k),k Z.从而我们有2k+bnjzje w+2k+1+bnjzje w=0,k Z,C0(Q).因此Qbij(z)zje wzi=kQkbij(z)zje wzi=kQkbij(z)zje wzi+kk+bnjzje w=0.所以e w H1(Q)在Q中满足zj(bij(z)zje w)=0.我们在Q中引入一个新的方程zj(eBij(z)zju)=0,其中eBij(z)=li
8、mzQlz(0,(2k1)bij(z),z Qk,k 0;bij(0),z Q0;limzQlz(0,(2k+1)bij(z),z Qk,k 0.定义范数如下:GYs,p=sup0r1r1s(rQ|G|p)1p.注意到bij(z)C(Q0),bij(z)在区域Q中是分段C连续的,于是可以推出?bij(z)eBij(z)?Y1+,2 0是仅依赖于n,1,1的常数,和无关.3.主要结果及其证明定理1设u H1(r)是方程(1.1)的一个弱解.若边界条件f和g满足(2.1)-(2.3),则存在仅依赖于n,R0,fC2,gC2,的常数C,使得|u(x)|CuL(r)+|x|m,x (r2),n 2.(
9、3.1)证不失一般性,本文假定r 1,以及式(2.3)中的a=1,即f(x)g(x)=|x|m+O(|x|m+),固定(x0,0)(r2),令=f(x0)g(x0)+.因为f和g满足(2.1)-(2.3),所以可以得到=f(x0)g(x0)+=|x|m+O(|x|m+)+C2|x0|m+.从而可得1C|x0|m+C|x0|m+,(3.2)544应用数学2024其中C仅依赖于DlC2,(l=1,2).考虑如下坐标变换y=(xx0),yn=xn.(3.3)令v(y)=u(x0+y,yn),aij(y)=aij(x0+y,yn),则在新的坐标系下,狭窄区域及其边界为e(r):=(y,yn)Rn?|y
10、|r,g(x0+y)2 yn f(x0+y)+2,e+(r):=(y,yn)Rn?|y|r,yn=f(x0+y)+2,e(r):=(y,yn)Rn?|y|1m,则|x0|m2|x0|m+2|x0|m2,从而|x0|m+|x0|m2.令 r 12|x0|m212|x0|,由于|y|r,并且 r与 无关,从而有12|x0|x0+y|32|x0|,进而得到(12)m(|x0|m+)|x0+y|m+(32)m(|x0|m+).因此,|x0|m+|x0+y|m+.(3.7)于是由式(3.5)与(3.7)我们可推得式(3.6).2)若|x0|1m,则|x0|m+2,于是我们有|x0|m+.由于|y|r,且
11、 r与无关,从而有y r r,进而|x0|m+|x0+y|m+.(3.8)因此由式(3.5)与(3.8)我们可推得式(3.6).注意到(yz)的特征值为 r(n 1重)和ynzn,由式(3.6)可知矩阵(yz)的所有特征值都被一致的常数控制,结合函数f和g的光滑性,可得t(bij(z)=t(yz)(aij(z)|det(yz)|(yz)t 1|2,Rn,?bij(z)?C(Q0)0和1 0是一致的常数.利用引理1,我们有wL(Q0(12)CwL(Q0).通过坐标变换(3.3)-(3.4)转化回关于u的方程,可得|u(x)|CuL(r)CuL(r)+|x|m,x (r2).于是式(3.1)得证.
12、546应用数学2024参考文献:1 AMMARI H,GIRAOLO G,KANG H,et al.Spectral analysis of the Neumann-Poincar e operatorand characterization of the stress concentration in anti-plane elasticityJ.Arch.Ration.Mech.Anal.,2013,208(1):275-304.2 AMMARI H,DAVIES B,YU S.Close-to-touching acoustic subwavelength resonators:eige
13、nfrequencyseparation and gradient blow-upJ.Multiscale Model.Simul.,2020,18(3):1299-1317.3 AMMARI H,KANG H,LEE H,et al.Optimal estimates for the electric field in two dimensionsJ.J.Math.Pures Appl.,2007,88(4):307-324.4 BAO E,LI Y Y,YIN B.Gradient estimates for the perfect conductivity problemJ.Arch.R
14、ation.Mech.Anal.,2009,193(1):195-226.5 WANG G L,MA F Y,WO W F.Anisotropic conductivity problem with both perfect and insulatedinclusionsJ.Bull.Malays.Math.Sci.Soc.,2022,45:1641-1656.6 BAO E,LI Y Y,YIN B.Gradient estimates for the perfect and the insulated conductivity problemswith multiple inclusion
15、sJ.Comm.Partial Differential Equations,2010,35(11):1982-2006.7 BAO J G,LI H G,LI Y Y.Gradient estimates for solutions of the Lams system with partially infinitecoefficients in dimensions greater than twoJ.Adv.Math.,2017,305:298-338.8 DONG H J,LI H G.Optimal estimates for the conductivity problem by
16、Greens function methodJ.Arch.Ration.Mech.Anal.,2019,231(3):1427-1453.9 DONG H J,ZHANG H.On an elliptic equation arising from composite materialsJ.Arch.Ration.Mech.Anal.,2016,222(1):47-89.10 LI Y Y,NIRENBERG L.Estimates for elliptic systems from composite materialJ.Commun.PureAppl.Math.,2010,56(7):89
17、2-925.11 LI H G.Asymptotics for the electric field concentration in the perfect conductivity problemJ.SIAMJ.Math.Anal.,2020,52(4):3350-3375.12 RAGUSA M A.On weak solutions of ultraparabolic equationsJ.Nonlinear Anal.,2001,47(1):503-511.13 ZHAO Z W.Gradient estimates for the insulated conductivity pr
18、oblem:The case of m-convex inclu-sionsJ.J.Math.Phys.,2023,64(3):031505.Gradient Estimate for the Conductivity Problem with Twom-Convex Insulator and Perfect Conductor InclusionsBAO Yuan,MA Feiyao(School of Mathematics and Statistics,Ningbo University,Ningbo 315211,China)Abstract:We consider the cond
19、uctivity problem involving two distinct inclusions,where one hasperfect conductivity and is located in close proximity to the other,which is insulated and separated bya distance of.In this paper,we generalize the shape of the inclusions from the 2-convex to the moregeneral case,obtaining an upper bound on the gradient of the solution when the shape of the inclusionsis m-convex(m 2).Key words:Conductivity problem;Gradient estimate;Perfect;Insulated;m-convex