1、2017年普通高等学校招生全国统一考试课标II理科数学【试卷点评】【命题特点】2017年高考全国新课标II数学卷,试卷结构在保持稳定的前提下,进行了微调,一是取消试卷中的第卷与第II卷,把解答题分为必考题与选考题两部分,二是根据中学教学实际把选考题中的三选一调整为二选一试卷坚持对基础知识、基本方法与基本技能的考查,注重数学在生活中的应用同时在保持稳定的基础上,进行适度的改革和创新,与2016年相比难度稳中有降具体来说还有以下几个特点:1知识点分布保持稳定小知识点集合、复数、程序框图、线性规划、向量问题、三视图保持一道小题的占比,大知识点三角数列三小一大、概率统计一大一小、立体几何两小一大、圆锥
2、曲线两小一大、函数导数三小一大(或两小一大)2注重对数学文化与数学应用的考查教育部2017年新修订的考试大纲(数学)中增加了数学文化的考查要求2017高考数学全国卷II理科第3题以算法统宗中的数学问题为背景进行考查,理科19题、文科18题以养殖水产为题材,贴近生活3注重基础,体现核心素养2017年高考数学试卷整体上保持一定比例的基础题,试卷注重通性通法在解题中的运用,另外抽象、推理和建模是数学的基本思想,也是数学研究的重要方法,试卷对此都有涉及【命题趋势】1函数知识:函数性质的综合应用、以导数知识为背景的函数问题是高考命题热点,函数性质重点是奇偶性、单调性及图象的应用,导数重点考查其在研究函数
3、中的应用,注重分类讨论及化归思想的应用2立体几何知识:立体几何一般有两道小题一道大题,小题中三视图是必考问题,常与几何体的表面积与体积结合在一起考查,解答题一般分2步进行考查3解析几何知识:解析几何试题一般有3道,圆、椭圆、双曲线、抛物线一般都会涉及,双曲线一般作为客观题进行考查,多为容易题,解答题一般以椭圆与抛物线为载体进行考查,运算量较大,不过近几年高考适当控制了运算量,难度有所降低4三角函数与数列:三角函数与数列解答题一般轮流出现,若解答题为数列题,一般比较容易,重点考查基本量求通项及几种求和方法,若解答题为三角函数,一般是解三角形问题,此时客观题中一般会有一道与三角函数性质有关的题目,
4、同时客观题中会有两道数列题,一易一难,数列客观题一般具有小巧活的特点【试卷解析】一、选择题:本题共12小题,每小题5分,共60分在每小题给出的四个选项中,只有一项是符合题目要求的1ABCD【答案】D2设集合,若,则ABCD【答案】C【解析】试题分析:由得,即是方程的根,所以,故选C【考点】 交集运算、元素与集合的关系【名师点睛】集合中元素的三个特性中的互异性对解题影响较大,特别是含有字母的集合,在求出字母的值后,要注意检验集合中的元素是否满足互异性两个防范:不要忽视元素的互异性;保证运算的准确性3我国古代数学名著算法统宗中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几
5、盏灯?”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有灯A1盏B3盏C5盏D9盏【答案】B4如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分后所得,则该几何体的体积为ABCD【答案】B【解析】试题分析:由题意,该几何体是一个组合体,下半部分是一个底面半径为3,高为4的圆柱,其体积,上半部分是一个底面半径为3,高为6的圆柱的一半,其体积,故该组合体的体积故选B【考点】 三视图、组合体的体积【名师点睛】在由三视图还原为空间几何体的实际形状时,要从三个视图综合考虑,根据三视图的规则,空间几何体的可见轮
6、廓线在三视图中为实线,不可见轮廓线在三视图中为虚线在还原空间几何体实际形状时,一般是以正视图和俯视图为主,结合侧视图进行综合考虑求解以三视图为载体的空间几何体的体积的关键是由三视图确定直观图的形状以及直观图中线面的位置关系和数量关系,利用相应体积公式求解5设,满足约束条件,则的最小值是ABCD 【答案】A6安排3名志愿者完成4项工作,每人至少完成1项,每项工作由1人完成,则不同的安排方式共有A12种B18种C24种D36种【答案】D【解析】试题分析:由题意可得,一人完成两项工作,其余两人每人完成一项工作,据此可得,只要把工作分成三份:有种方法,然后进行全排列,由乘法原理,不同的安排方式共有种
7、故选D【考点】 排列与组合、分步乘法计数原理【名师点睛】(1)解排列组合问题要遵循两个原则:按元素(或位置)的性质进行分类;按事情发生的过程进行分步具体地说,解排列组合问题常以元素(或位置)为主体,即先满足特殊元素(或位置),再考虑其他元素(或位置)(2)不同元素的分配问题,往往是先分组再分配在分组时,通常有三种类型:不均匀分组;均匀分组;部分均匀分组注意各种分组类型中,不同分组方法的求解7甲、乙、丙、丁四位同学一起去向老师询问成语竞赛的成绩老师说:你们四人中有2位优秀,2位良好,我现在给甲看乙、丙的成绩,给乙看丙的成绩,给丁看甲的成绩看后甲对大家说:我还是不知道我的成绩根据以上信息,则A乙可
8、以知道四人的成绩B丁可以知道四人的成绩C乙、丁可以知道对方的成绩D乙、丁可以知道自己的成绩【答案】D8执行右面的程序框图,如果输入的,则输出的A2B3C4D5【答案】B9若双曲线(,)的一条渐近线被圆所截得的弦长为2,则的离心率为A2BCD【答案】A【解析】试题分析:由几何关系可得,双曲线的渐近线方程为,圆心到渐近线距离为,则点到直线的距离为,即,整理可得,双曲线的离心率故选A【考点】 双曲线的离心率;直线与圆的位置关系,点到直线的距离公式【名师点睛】双曲线的离心率是双曲线最重要的几何性质,求双曲线的离心率(或离心率的取值范围),常见有两种方法:求出a,c,代入公式;只需要根据一个条件得到关于
9、a,b,c的齐次式,结合b2c2a2转化为a,c的齐次式,然后等式(不等式)两边分别除以a或a2转化为关于e的方程(不等式),解方程(不等式)即可得e(e的取值范围)10已知直三棱柱中,则异面直线与所成角的余弦值为ABCD【答案】C11若是函数的极值点,则的极小值为ABCD1【答案】A【解析】试题分析:由题可得,因为,所以,故,令,解得或,所以在上单调递增,在上单调递减,所以的极小值为,故选A【考点】 函数的极值、函数的单调性【名师点睛】(1)可导函数yf(x)在点x0处取得极值的充要条件是f (x0)0,且在x0左侧与右侧f (x)的符号不同学*;(2)若f(x)在(a,b)内有极值,那么f
10、(x)在(a,b)内绝不是单调函数,即在某区间上单调增或减的函数没有极值12已知是边长为2的等边三角形,为平面内一点,则的最小是ABC D【答案】B解等问题,然后利用函数、不等式、方程的有关知识来解决二、填空题:本题共4小题,每小题5分,共20分13一批产品的二等品率为,从这批产品中每次随机取一件,有放回地抽取次,表示抽到的二等品件数,则_【答案】【解析】试题分析:由题意可得,抽到二等品的件数符合二项分布,即,由二项分布的期望公式可得【考点】 二项分布的期望与方差【名师点睛】判断一个随机变量是否服从二项分布,要看两点:是否为n次独立重复试验,在每次试验中事件A发生的概率是否均为p;随机变量是否
11、为在这n次独立重复试验中某事件发生的次数,且表示在独立重复试验中,事件A恰好发生k次的概率14函数的最大值是_【答案】115等差数列的前项和为,则_【答案】【解析】16已知是抛物线的焦点,是上一点,的延长线交轴于点若为的中点,则_【答案】6【解析】试题分析:如图所示,不妨设点M位于第一象限,设抛物线的准线与轴交于点,作与点,与点,由抛物线的解析式可得准线方程为,则,在直角梯形中,中位线,由抛物线的定义有:,结合题意,有,故【考点】抛物线的定义、梯形中位线在解析几何中的应用【名师点睛】抛物线的定义是解决抛物线问题的基础,它能将两种距离(抛物线上的点到焦点的距离、抛物线上的点到准线的距离)进行等量
12、转化如果问题中涉及抛物线的焦点和准线,又能与距离联系起来,那么用抛物线定义就能解决问题因此,涉及抛物线的焦半径、焦点弦问题,可以优先考虑利用抛物线的定义转化为点到准线的距离,这样就可以使问题简单化三、解答题:共70分解答应写出文字说明、证明过程或演算步骤第1721题为必考题,每个试题考生都必须作答第22、23题为选考题,考生根据要求作答(一)必考题:共60分17(12分)的内角的对边分别为,已知(1)求;(2)若,的面积为,求【答案】(1);(2) “边转角”“角转边”,另外要注意三者之间的关系,这样的题目小而活,备受命题者的青睐18(12分)海水养殖场进行某水产品的新、旧网箱养殖方法的产量对
13、比,收获时各随机抽取了100 个网箱,测量各箱水产品的产量(单位:kg)其频率分布直方图如下:(1)设两种养殖方法的箱产量相互独立,记A表示事件:“旧养殖法的箱产量低于50kg,新养殖法的箱产量不低于50kg”,估计A的概率;(2)填写下面列联表,并根据列联表判断是否有99%的把握认为箱产量与养殖方法有关:箱产量50kg箱产量50kg旧养殖法新养殖法(3)根据箱产量的频率分布直方图,求新养殖法箱产量的中位数的估计值(精确到0.01)附:, 【答案】(1);(2)有的把握认为箱产量与养殖方法有关;(3)【考点】 独立事件概率公式、独立性检验原理、频率分布直方图估计中位数【名师点睛】(1)利用独立
14、性检验,能够帮助我们对日常生活中的实际问题作出合理的推断和预测独立性检验就是考察两个分类变量是否有关系,并能较为准确地给出这种判断的可信度,随机变量的观测值值越大,说明“两个变量有关系”的可能性越大(2)利用频率分布直方图求众数、中位数和平均数时,应注意三点:最高的小长方形底边中点的横坐标即众数;中位数左边和右边的小长方形的面积和是相等的;平均数是频率分布直方图的“重心”,等于频率分布直方图中每个小长方形的面积乘以小长方形底边中点的横坐标之和19(12分)如图,四棱锥P-ABCD中,侧面PAD为等边三角形且垂直于底面ABCD, E是PD的中点(1)证明:直线平面PAB;(2)点M在棱PC 上,
15、且直线BM与底面ABCD所成角为,求二面角的余弦值【答案】(1)证明略;(2)【考点】 判定线面平行、面面角的向量求法【名师点睛】(1)求解本题要注意两点:两平面的法向量的夹角不一定是所求的二面角,利用方程思想进行向量运算,要认真细心、准确计算(2)设m,n分别为平面,的法向量,则二面角与互补或相等,故有|cos |cos|=求解时一定要注意结合实际图形判断所求角是锐角还是钝角20(12分)设O为坐标原点,动点M在椭圆C:上,过M作x轴的垂线,垂足为N,点P满足(1)求点P的轨迹方程;(2)设点Q在直线上,且证明:过点P且垂直于OQ的直线l过C的左焦点F 【答案】(1) ;(2)证明略【考点】
16、 轨迹方程的求解、直线过定点问题【名师点睛】求轨迹方程的常用方法:(1)直接法:直接利用条件建立x,y之间的关系F(x,y)0(2)待定系数法:已知所求曲线的类型,求曲线方程(3)定义法:先根据条件得出动点的轨迹是某种已知曲线,再由曲线的定义直接写出动点的轨迹方程(4)代入(相关点)法:动点P(x,y)依赖于另一动点Q(x0,y0)的变化而运动,常利用代入法求动点P(x,y)的轨迹方程21(12分)已知函数,且(1)求;(2)证明:存在唯一的极大值点,且【答案】(1);(2)证明见解析(2)由(1)知 ,设,则当 时, ;当 时,所以在上单调递减,在上单调递增又,所以在有唯一零点,在有唯一零点
17、1,且当时,;当时,当时,因为,所以是的唯一极大值点由得,故由得因为是在(0,1)的最大值点,由,得所以【考点】利用导数研究函数的单调性、利用导数研究函数的极值【名师点睛】导数是研究函数的单调性、极值(最值)最有效的工具,而函数是高中数学中重要的知识点,所以在历届高考中,对导数的应用的考查都非常突出导数专题在高考中的命题方向及命题角度:从高考来看,对导数的应用的考查主要从以下几个角度进行:(1)考查导数的几何意义,往往与解析几何、微积分相联系;(2)利用导数求函数的单调区间,判断单调性;已知单调性求参数;(3)利用导数求函数的最值(极值),解决生活中的优化问题;(4)考查数形结合思想的应用(二
18、)选考题:共10分请考生在第22、23题中任选一题作答如果多做,则按所做的第一题计分22选修44:坐标系与参数方程(10分)在直角坐标系xOy中,以坐标原点为极点,x轴正半轴为极轴建立极坐标系,曲线的极坐标方程为(1)M为曲线上的动点,点P在线段OM上,且满足,求点P的轨迹的直角坐标方程;(2)设点A的极坐标为,点B在曲线上,求面积的最大值【答案】(1);(2)(2)设点B的极坐标为,由题设知,于是的面积当时,S取得最大值,所以面积的最大值为【考点】圆的极坐标方程与直角坐标方程、三角形面积的最值【名师点睛】本题考查了极坐标方程的求法及应用。重点考查了转化与化归能力遇到求曲线交点、距离、线段长等几何问题时,求解的一般方法是分别化为普通方程和直角坐标方程后求解,或者直接利用极坐标的几何意义求解解题时要结合题目自身特点,确定选择何种方程23选修45:不等式选讲(10分)已知证明:(1);(2)【答案】(1)证明略;(2)证明略【考点】 基本不等式、配方法