1、第一章 统计数据的收集与整理1。1 算术平均数是怎样计算的?为什么要计算平均数?答:算数平均数由下式计算:,含义为将全部观测值相加再被观测值的个数除,所得之商称为算术平均数.计算算数平均数的目的,是用平均数表示样本数据的集中点,或是说是样本数据的代表。1。2 既然方差和标准差都是衡量数据变异程度的,有了方差为什么还要计算标准差?答:标准差的单位与数据的原始单位一致,能更直观地反映数据地离散程度。1.3 标准差是描述数据变异程度的量,变异系数也是描述数据变异程度的量,两者之间有什么不同?答:变异系数可以说是用平均数标准化了的标准差。在比较两个平均数不同的样本时所得结果更可靠.1。4 完整地描述一
2、组数据需要哪几个特征数?答:平均数、标准差、偏斜度和峭度。1。5 下表是我国青年男子体重(kg)。由于测量精度的要求,从表面上看像是离散型数据,不要忘记,体重是通过度量得到的,属于连续型数据。根据表中所给出的数据编制频数分布表。666964656466686562646961616866576669666570645867666667666662666664626265646566726066656161666762656561646264656265686865676862637065646562666263686568576766686364666864636064696566676767
3、656767666864675966656356666363666763706770626472696767666864657161636164646769706664656463706462697068656365666468696563676370656867696665676674646965646565686765656667726567626771696565756269686865636666656261686564676664606168676359656064636962716960635967616869666469656867646466697368606063386267
4、656569656765726667646164666363666666636563676866626361666163686566696466706970636465646767656662616565606365626664答:首先建立一个外部数据文件,名称和路径为:E:dataexer15e.dat。所用的SAS程序和计算结果如下:proc format; value hfmt 5657=5657 58-59=58-59 6061=6061 6263=6263 6465=64-65 6667=66-67 6869=6869 70-71=70-71 7273=7273 7475=7475;
5、run;data weight; infile E:dataexer1-5e.dat; input bw ;run;proc freq; table bw; format bw hfmt。;run;The SAS SystemCumulative CumulativeBW Frequency Percent Frequency Percent-56-57 3 1.0 3 1.05859 4 1。3 7 2.360-61 22 7。3 29 9.762-63 46 15.3 75 25。06465 83 27。7 158 52。76667 77 25。7 235 78.36869 45 15。0
6、 280 93.37071 13 4.3 293 97。772-73 5 1.7 298 99.374-75 2 0.7 300 100。01。6 将上述我国男青年体重看作一个有限总体,用随机数字表从该总体中随机抽出含量为10的两个样本,分别计算它们的平均数和标准差并进行比较。它们的平均数相等吗?标准差相等吗?能够解释为什么吗?答:用means过程计算,两个样本分别称为和,结果见下表:The SAS SystemVariable N Mean Std Dev-Y1 10 64。5000000 3。5039660Y2 10 63。9000000 3。1780497-随机抽出的两个样本,它们的平均
7、数和标准差都不相等.因为样本平均数和标准差都是统计量,统计量有自己的分布,很难得到平均数和标准差都相等的两个样本.1。7 从一个有限总体中采用非放回式抽样,所得到的样本是简单的随机样本吗?为什么?本课程要求的样本都是随机样本,应当采用哪种抽样方法,才能获得一随机样本?答:不是简单的随机样本。从一个有限总体中以非放回式抽样方法抽样,在前后两次抽样之间不是相互独立的,后一次的抽样结果与前一次抽样的结果有关联,因此不是随机样本.应采用随机抽样的方法抽取样本,具体说应当采用放回式抽样.1。8 证明若用或编码时,前式是否仍然相等?答:(1)令 则 平均数特性之。 (2) 令 则 平均数特性之。用第二种编
8、码方式编码结果,两式不再相等。1.9 有一个样本:,设B为其中任意一个数值.证明只有当最小。这是平均数的一个重要特性,在后面讲到一元线型回归时还会用到该特性。答:令 , 为求使p达最小之B,令则 。 1.10 检测菌肥的功效,在施有菌肥的土壤中种植小麦,成苗后测量苗高,共100株,数据如下1:10.09。37。29。18。58.010.510。69.610.17.06.79.57.810.57.98。19.67。69.410.07.57.25.07。38.77.16.15.26.810.09。97.54。57.67.09.76。28。06.98.38.610。04。84。97.08。38.47
9、.87.56。610.06.59。58。511。09。76.610。05.06。58.08。48。37.47.48.17。77。57。17.87。68。66。07.06。46。76.36。411。010。57.85.08.07.07。45。26。79.08。64.66.93.56。29。76.45。86。49。36。4编制苗高的频数分布表,绘制频数分布图,并计算出该样本的四个特征数。答:首先建立一个外部数据文件,名称和路径为:E:dataexr1-10e.dat。SAS程序及结果如下:options nodate;proc format; value hfmt 3。5-4.4=3.54.4 4
10、。55.4=4.55.4 5.5-6.4=5。56。4 6.57。4=6。5-7。4 7.58.4=7。5-8。4 8。59。4=8.5-9.4 9。5-10。4=9.510.4 10.5-11。4=10.5-11.4; run; data wheat; infile E:dataexr110e。dat; input height ; run; proc freq; table height; format height hfmt。; run;proc capability graphics noprint; var height; histogram/vscale=count; inset
11、mean var skewness kurtosis;run;The SAS SystemThe FREQ ProcedureCumulative Cumulativeheight Frequency Percent Frequency Percent- 3.5-4。4 1 1。00 1 1.004。5-5。4 9 9。00 10 10.005。5-6。4 11 11。00 21 21.006。57。4 23 23.00 44 44.007.58。4 24 24。00 68 68。008.59.4 11 11。00 79 79。009.510。4 15 15.00 94 94.0010.511
12、.4 6 6.00 100 100.001。11 北太平洋宽吻海豚羟丁酸脱氢酶(HDBH)数据的接收范围频数表2如下:(略作调整)HDBH数据的接收范围/(U L1)频 数2141245。909 13277.818 211309.727 319341.636 426373。545 522405.454 511437。363 613469。272 76501.181 83533.090 92根据上表中的数据作出直方图.答:以表中第一列所给出的数值为组界,直方图如下:1。12 灵长类手掌和脚掌可以握物一侧的皮肤表面都有突起的皮肤纹嵴.纹嵴有许多特征,这些特征在胚胎形成之后是终生不变的。人类手指尖的
13、纹型,大致可以分为弓、箕和斗三种类型。在手指第一节的基部可以找到一个点,从该点纹嵴向三个方向辐射,这个点称为三叉点.弓形纹没有三叉点,箕形纹有一个三叉点,斗形纹有两个三叉点,记录从三叉点到箕或斗中心的纹嵴数目称为纹嵴数(finger ridge count, FRC)。将双手十个指尖的全部箕形纹的纹嵴数和/或斗形纹两个纹嵴数中较大者相加,称为总纹嵴数(total finger ridge count, TFRC)。下表给出了大理白族人群总纹嵴数的频数分布3:TFRC分组中值频 数1130202315040151706087190802991110100541111301206313115014
14、06815117016051171190180181912102006首先判断数据的类型,然后绘出样本频数分布图,计算样本的四个特征数并描述样本分布形态。答:总纹脊数属计数数据.计数数据的频数分布图为柱状图,频数分布图如下:样本特征数(以TFRC的中值计算)SAS程序:options nodate;data tfrc; do i=1 to 10; input y ; input n ; do j=1 to n; output; end; end;cards; 20 2 40 1 60 8 80 29100 54120 63140 68160 51180 18200 6;run;proc mea
15、ns mean std skewness kurtosis; var y;run;结果见下表:The SAS SystemAnalysis Variable : YMean Std Dev Skewness Kurtosis-126。5333333 32.8366112 -0。2056527 -0.0325058-从频数分布图可以看出,该分布的众数在第七组,即总纹脊数的中值为140的那一组。分布不对称,平均数略小于众数,有些负偏。偏斜度为0.2056527,偏斜的程度不是很明显,基本上还可以认为是对称的,峭度几乎为零。1.13 海南粗榧叶长度的频数分布4:叶长度/mm中值频 数 2。02。22
16、。13902.22.42。31 4342。42.62.52 6432.62.82。73 5462。83。02.95 6923.03。23。15 1873.23.43.34 3333.43。63.52 7673.63。83。71 6773。84。03。91 137nag4。04。24.16674。24。44.33464.44。64.5181绘出频数分布图,并计算偏斜度和峭度。答:表中第一列所给出的数值为组限,下图为海南粗榧叶长度的频数分布图。计算偏斜度和峭度的SAS程序和计算结果如下:options nodate;data length; do i=1 to 13; input y ; inpu
17、t n ; do j=1 to n; output; end; end;cards;2。1 3902。3 14342.5 26432.7 35462。9 56923.1 51873.3 43333.5 27673。7 16773.9 11374。1 6674.3 3464。5 181;run;proc means n skewness kurtosis; var y;run;The SAS SystemAnalysis Variable : Yn Skewness Kurtosis-30000 0.4106458 0。0587006-样本含量n30000,是一个很大的样本,样本的偏斜度和峭度都
18、已经很可靠了。偏斜度为0。41,有一个明显的正偏。1。14 马边河贝氏高原鳅繁殖群体体重分布如下5:体质量/g中值雌 鱼雄 鱼2.003。002。50143.004.003.50674.005.004。5013115。006.005。5030256.007。006。5025257。008.007.5016238。009。008。5021179.0010.009.50181610.0011.0010。5012411。0012.0011.50312.0013。0012。502首先判断数据的类型,然后分别绘制雌鱼和雄鱼的频数分布图,计算样本平均数、标准差、偏斜度和峭度并比较两者的变异程度。答:鱼的体
19、重为度量数据,表中第一列所给出的数值为组限。在下面的分布图中雌鱼和雄鱼的分布绘在了同一张图上,以不同的颜色表示。计算统计量的SAS程序与前面的例题类似,这里不再给出,只给出结果。雌鱼:The SAS SystemAnalysis Variable : YN Mean Std Dev Skewness Kurtosis-147 7。2414966 2.1456820 0。2318337 0。6758677- 雄鱼:The SAS SystemAnalysis Variable : YN Mean Std Dev Skewness Kurtosis-132 6。7803030 1。9233971
20、-0.1322816 0。5510332-直观地看,雄鱼的平均体重低于雌鱼。雌鱼有一正偏,雄鱼有一负偏。因此,相对来说雌鱼低体重者较多,雄鱼高体重者较多。但两者都有很明显的负峭度,说明“曲线较平坦,两尾翘得较高。1。15 黄胸鼠体重的频数分布6:组 界/g频 数 01510153026304530456022607522759017 901051610512014120135613515041501652总 数169绘制频数分布图,从图形上看分布是对称的吗,说明什么问题?答:下面是频数分布图:从上图可见,图形不是对称的,有一些正偏。说明在该黄雄鼠群体中,低体重者分布数量,高于高体重者的数量。另
21、外,似乎峭度也有些低。1.16 25名患者入院后最初的白细胞数量(103)7 如下表:851241168771273111411966561014455计算白细胞数量的平均数、方差和标准差。答:用means过程计算,程序不再给出,只给出运行结果。The SAS SystemAnalysis Variable : YN Mean Variance Std Dev-25 7.8400000 10。3066667 3.2103998-1.17 细胞珠蛋白基因(CYGB)可能是非小细胞肺癌(NSCLC)的抑制基因之一。一个研究小组研究了该基因的表达、启动子甲基化和等位基因不平衡状态等,以便发现它与肿瘤
22、发病间的关联。下面列出了其中15名患者的基因表达(肿瘤患者/正常对照,T/N),肿瘤患者与正常对照甲基化指数差(MtITMtIN)8:样本号T/NMtITMtIN3570.0140.4193700.0190。0173670.0350。1053160.0440。3333690.0540。1703580.0840。2463030.1110。2423140。1350。3643080.2360。0513100.2530。5203410。2640.2003480。3150。1033230。3590。1673600。4220.1763360。4420。037计算以上两项指标的平均数和标准差并计算两者的变异系数,这两个变异系数可以比较吗?为什么?答:记 T/N为,MtIT-MtIN为,用means过程计算,SAS运行的结果见下表:The SAS SystemVariable N Mean Std Dev CV-Y1 15 0。1858000 0.1505624 81。0346471Y2 15 0。2100000 0。1465274 69.7749634-两个变异系数是可以比较的,因为它们的标准差都是用平均数标准化了的,已经不存在不同单位的影响了。9 / 9