收藏 分销(赏)

生物统计学教案(2).doc

上传人:丰**** 文档编号:4022696 上传时间:2024-07-25 格式:DOC 页数:5 大小:22.04KB
下载 相关 举报
生物统计学教案(2).doc_第1页
第1页 / 共5页
生物统计学教案(2).doc_第2页
第2页 / 共5页
生物统计学教案(2).doc_第3页
第3页 / 共5页
生物统计学教案(2).doc_第4页
第4页 / 共5页
生物统计学教案(2).doc_第5页
第5页 / 共5页
亲,该文档总共5页,全部预览完了,如果喜欢就下载吧!
资源描述

1、生物统计学教案第二章 概率和概率分布教学时间:2学时教学方法:课堂板书讲授教学目的:重点掌握离散型概率分布和连续型概率分布,掌握概率、总体特征数的定义和一般运算,了解概率分布与频率分布的关系讲授难点:离散型概率分布和连续型概率分布2。1 概率的基本概念(45分钟)2.1.1 问题的提出从同一总体中抽取样本,各次所得到的样本不会完全相同。用不同样本去推断同一总体将得出不同的结论。这些结论不可能都是正确的.用某个样本去推断总体时,错误的可能性有多大?置信度有多高?这是对总体推断时所必须回答的问题。为回答这个问题,就要对总体分布有所了解。总体分布是建立在概率这一概念基础之上的。自然现象,一般可分为确

2、定性现象和非确定性现象。非确定性现象或称为随机现象。随机现象不存在简单的因果关系。支配这些现象出现的因素很多,各因素所起的作用不一样,作用的程度也不一样,很难遇到两个不同个体接受相同的配合方式,因此从每一个个体所观察到的结果都 不一样。研究偶然现象本身规律性的科学称为概率论.基于实际观测结果,利用概率论得出的规律,揭示偶然性中所寄寓的必然性的科学就是统计学。2。1.2 事件及事件间的关系(自已复习)2。1。3 概率的统计定义(重点) 设某随机试验共进行k次,成功了(事件A)l次,则称l/k是k次随机试验中成功的频率。我们会发现,随着k的增大,频率l/k将围绕某一确定的常数p做平均幅度越来越小的

3、变动,最终稳定于p,p即为事件A的概率。 表21 不同样本含量的抽样试验 k=20 k=200 k=2000抽样号 l l/k l l/k l l/k 1 1 0.050 32 0.160 403 0。202 2 4 0。200 31 0。155 414 0。207 3 1 0.050 38 0。190 409 0.205 4 4 0.200 49 0。245 382 0。191 5 5 0.250 40 0。200 416 0。208 6 7 0。350 37 0。185 413 0.207 7 6 0。300 40 0.200 388 0。194 8 2 0.100 29 0。145 42

4、3 0.212 9 4 0。200 47 0.235 410 0.205 10 4 0。200 53 0。265 395 0.193本例的l/k最后似乎稳定在0.200处,称0.200为事件A的概率,记为: P(A)0.200它的含义是随机试验中的每一个个体成功的可能性为0。200.概率的概念是,事件在试验结果中出现可能性大小的定量计量。概率有以下性质(1)任何事件(A)的概率均满足 0P(A)1(2)必然事件(W)的概率为1 P(W)1(3)不可能事件(V)的概率为0 P(V)02。1.4 概率的古典定义条件:1、随机试验的全部可能的结果(基本事件数)是有限的。 2、各基本事件间是互不相容且

5、等可能的.定义: P(A)m / n其中,m为事件A中所包含的基本事件数,n为基本事件总数。缺点:在没给出概率的定义之前已经利用了概率的概念。2.1.5 概率的一般运算(重点)1加法法则: P(AB) P(A) P(B) P(AB)若A、B为互不相容事件,则 P(AB) P(A) P(B)若有限个事件两两互不相容,则 P(A1A2An) P(A1) P(A2) P(An)事件A与事件的概率存在以下关系 P() 1 P(A) 2条件概率: 在已知事件B发生的条件下,事件A发生的概率,称为事件A发生的条件概率,记为P(AB)。相对于条件概率,把没有附加条件的概率称为无条件概率。(例2。2) P(A

6、B) P(AB) P(B) 3概率乘法法则: 两事件交的概率,等于其中一事件(其概率必须不为0)的概率乘以另一事件在已知前一事件发生条件下的条件概率。 P(AB) P(B)P(AB) 或 P(AB) P(A)P(BA) 4独立事件:若事件A的发生并不影响事件B发生的概率,即 P(BA) P(B)或P(AB) P(A)则称A和B为相互独立事件。对于独立事件,概率乘法公式为P(AB) P(A)P(B)5贝叶斯定理:认事件B且只能与A1,A2, ,Ak之一同时发生,那么,在事件B已发生的条件下,Ai发生的概率举例(例2。3)2.2 概率分布(25分钟)2.2.1 随机变量随机变量:随机试验中被测定的

7、量,常以大写的拉丁字母表示。观测值:随机变量所取得的值,常以带下标的小写字母表示. 离散型随机变量:随机变量可能取得的值为有限个或可数无穷个孤立的数值。连续型随机变量:随机变量可能取得的值为某一区间内的任何数值。2。2。2 离散型概率分布(重点)概率函数:将随机变量X所取得值x的概率P(Xx)写成x的函数p(x),这样的函数称为随机变量X的概率函数 p(x) P(Xx)概率函数应满足:概率分布:将X的一切可能值x1,x2,,xn,以及取得这些值的概率p(x1),p(x2),p(xn),排列起来,即构成离散型随机变量的概率分布。可用概率分布表和概率分布图表示 图21 离散型随机变量概率分布图分布

8、函数:随机变量小于等于某一可能值(x0)的概率,记为F(x0)2。2。3 连续型概率分布(重点)密度函数:随机变量X的值落在区间(x,x +x)内的概率为P(x X x +x),当x0时,P(x X x +x) / x的极限表示随机变量X在点x处的概率密度,用符号f(x)表示,称f(x)为随机变量的密度函数。分布曲线:概率密度的图形y = f (x),称为分布曲线. 图22 连续型分布曲线概率P(aXb)等于区间a,b所夹的曲线下面积.分布函数:随机变量取得小于x0的值的概率,记为F(x0)对于任意两点a和b2。2.4 概率分布与 频率分布的关系 统计量:由样本数据计算出来的各种量,通常以小写拉丁字母表示 参数:总体恒定的量,通常以小写的希腊字母表示2.3 总体特征数(20分钟)2.3.1 随机变量的数学期望和方差(重点)总体特征数:描述概率分布特征的数字称为总体特征数。随机变量的数学期望(总体平均数)和方差是两个主要的特征数.数学期望:可由频数资料的样本平均数,推导出总体平均数。 方差:同样,从频数资料得到的样本方差用2表示总体方差,则总体方差或者总体标准差定义为仿照离散型随机变量,连续型随机变量的数学期望定义为:连续型随机变量的方差定义为:2。3。2 数学期望和方差的计算 数学期望的运算法则如下,其中c为常数总体方差记为var(X),总体方差的运算法则如下:22

展开阅读全文
部分上传会员的收益排行 01、路***(¥15400+),02、曲****(¥15300+),
03、wei****016(¥13200+),04、大***流(¥12600+),
05、Fis****915(¥4200+),06、h****i(¥4100+),
07、Q**(¥3400+),08、自******点(¥2400+),
09、h*****x(¥1400+),10、c****e(¥1100+),
11、be*****ha(¥800+),12、13********8(¥800+)。
相似文档                                   自信AI助手自信AI助手
搜索标签

当前位置:首页 > 教育专区 > 其他

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2024 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服