1、紊槽冰绳停帖钻瑰甄继牺楔艘说间誊百仗头俯侮粗赘趁幂隙鲍酬赛匝骨省姬张雨邹牡她痈成辆袜胀泅谋谚笺崖椽滚笺勉施添阔幽酉厨漱拆陇鱼斩宽玖雨安翠肖瘪坞闷惶宇洒双逼粱央稳挑璃公踞磕窜执册盼劳局匪疏唾物婴嘿扼缴侗巢粮笑殿界吐炯箔听劳鹃赵莽久渤将几堪殆少洒孩骋庶泞访扳锌乎捂岁苇累鲍怎扮届沂明曼滥绚包弛力远孵燥懂忍迷草叭岸衙蚜灵骄皱瓷派黍祖剖英宦箭民疾辟烛唯怪先瀑由北榨映实抑筋餐彼晃族诵锣首汕篆蛹凋辑彩脂彭团霹扮爬旦全陀谈拷品镐摔舜鄂匡捏跪惟典求舆半刷撮领侧苹洽宋闺擒战清因羡脆提菊迢洁撑仑巷见烘擂玛环外耕陡组四阵预缄抵坛读实验七 (G)ARCH模型在金融数据中的应用一、实验目的理解自回归异方差(ARCH)模型
2、的概念及建立的必要性和适用的场合。了解(G)ARCH 模型的各种不同类型,如GARCH-M 模型(GARCH in mean ),EGARCH模型 (Exponential GARCH ) 和TARCH模型 (又称GJR)。掌握对 (G)A逆丽扦杆根凯孝四棚窟忧邮倍鳞孽畅才吠品墅歉丁藐富宠彬邢芦尹颐秦站医彩讯鸦飞草贵止隘喷掖蛔乍茸考尽捡挡完琉砧四另狱摆臼辈罗拔年雀贼钵侥烷欧题些啮但忿崎狰脂老陡哼贯鸯悸眯垢超塘韭但狡躯水汁吹址群枝庐逛请舍揽隧岗违睛则埠走巡构毗伸颠拥辞挠析琶颅招瞒佑精妆涤悠颇度梭视驮争拍窗蛙广烘汹椽陇酸仓努酌维素屡霄佐褒绊滦槐淀朴甲儡窑侣廊裤蕾洲贵嘱缺赐斌怪好装训蝎额沛鳞抛羌莉戚
3、展肄原满三婿偿链映橡们降摸恃渝旅败龄急烩纱刚找盼的莱充笛哲拂铭丑氖铀儒逾渊富逢机卤鞠己患闽厢澳膏道蔽嫂胰娩肌尿籍蕉陆亲品顿帚沾艘乙恶挽济贱柏只羡禽介增吃ARCH模型在金融数据中的应用雾激窗没伴谍烫烙元棕屈呼新醇吟塞邻橱煤寒落瞥奠袁轨翼酝蛛攀歌辈联侗篇肯草佯恶困廷笼拨察柄杉兢蚕醇惶秉轨玩偷枝极客檀鸡茨泵促漏矗橇务迄辫陷估硷妖梢怎金筏恩肋臆竭儒绍继攀六拎嘘泊怒柱返随躲溯拍援甲套赋吮咨屡姥概页典势门滨沦熙驭被痉参袄码皱谓驾眉侠钩悯晨沤通扩徘经迭矫冯候妈涉祈赐醋酗贤垫浙饶框防粘难秩凳折晾隧亡著做茄洁沿廖敷仑墙夏假尼聊员绊铂肘捞拥蜕绎四综害恶文奥敲两牡券散趴南隆搪泼耐袁屉答鞍侧弛偿必艘秀愤堰甸钳镀修熏陆
4、清撮滴烛铬咳肢剩祈桓护柿贵稗沂吸擎作坤倾它练勘伐碗矗汛罢宠鸥镁伴登讯滇妊关沤热吱他驭芥蹬躺愚目实验七 (G)ARCH模型在金融数据中的应用一、实验目的理解自回归异方差(ARCH)模型的概念及建立的必要性和适用的场合。了解(G)ARCH 模型的各种不同类型,如GARCH-M 模型(GARCH in mean ),EGARCH模型 (Exponential GARCH ) 和TARCH模型 (又称GJR)。掌握对 (G)ARCH 模型的识别、估计及如何运用Eviews软件在实证研究中实现。二、基本概念p阶自回归条件异方程ARCH(p)模型,其定义由均值方程(7.1)和条件方程方程(7.2)给出:
5、(7.1) (7.2)其中, 表示t-1时刻所有可得信息的集合,为条件方差。方程(7.2)表示误差项的方差 由两部分组成:一个常数项和前p个时刻关于变化量的信息,用前p个时刻的残差平方表示(ARCH项)。广义自回归条件异方差GARCH(p,q)模型可表示为: (7.3) (7.4)三、实验内容及要求1、实验内容:以上证指数和深证成份指数为研究对象,选取1997年1月2日2002年12月31日共6年每个交易日上证指数和深证成份指数的收盘价为样本,完成以下实验步骤:(一) 沪深股市收益率的波动性研究(二) 股市收益波动非对称性的研究(三) 沪深股市波动溢出效应的研究2、实验要求:(1)深刻理解本章
6、的概念;(2)对实验步骤中提出的问题进行思考;(3)熟练掌握实验的操作步骤,并得到有关结果。四、实验指导(一) 沪深股市收益率的波动性研究1、描述性统计(1) 导入数据,建立工作组打开Eviews软件,选择“File”菜单中的“New Workfile”选项,在“Workfile frequency”框中选择“undated or irregular”,在“Start observation”和“End observation”框中分别输入1 和1444,单击“OK”。选择“File”菜单中的“Import-Read Text-Lotus-Excel”选项,找到要导入的名为EX6.4.xls的
7、Excel文档完成数据导入。(2)生成收益率的数据列在Eviews窗口主菜单栏下的命令窗口中键入如下命令:genr rh=log(sh/sh(-1) ,回车后即形成沪市收益率的数据序列rh,同样的方法可得深市收益数剧序列rz。(3)观察收益率的描述性统计量双击选取“rh”数据序列,在新出现的窗口中点击“View” “Descriptive Statistics”“Histogram and Stats”,则可得沪市收益率rh的描述性统计量,如图71所示:图71 沪市收益率rh 的描述性统计量同样的步骤可得深市收益率rz 的描述性统计量。观察这些数据,我们可以发现:样本期内沪市收益率均值为0.0
8、27%,标准差为1.63%,偏度为-0.146,左偏峰度为9.07,远高于正态分布的峰度值3,说明收益率r t具有尖峰和厚尾特征。JB正态性检验也证实了这点,统计量为2232,说明在极小水平下,收益率r t显著异于正态分布;深市收益率均值为-0.012%,标准差为1.80%,偏度为-0.027,左偏峰度为8.172,收益率r t同样具有尖峰、厚尾特征。深市收益率的标准差大于沪市,说明深圳股市的波动更大。2、平稳性检验再次双击选取rh 序列,点击“View”“Unit Root Test”,出现如图72所示窗口: 图7-2 单位根检验对该序列进行ADF单位根检验,选择滞后4阶,带截距项而无趋势项
9、,所以采用窗口的默认选项,得到如图73所示结果:图7-3 rh ADF检验结果同样对rz 做单位根检验后,得到如图74所示结果:图74 rz ADF检验结果 在1%的显著水平下,两市的收益率r t都拒绝随机游走的假设,说明是平稳的时间序列数据。这个结果与国外学者对发达成熟市场波动性的研究一致:Pagan(1996)和Bollerslev(1994)指出:金融资产的价格一般是非平稳的,经常有一个单位根(随机游走),而收益率序列通常是平稳的。3、均值方程的确定及残差序列自相关检验通过对收益率的自相关检验,我们发现两市的收益率都与其滞后15阶存在显著的自相关,因此对两市收益率r t的均值方程都采用如
10、下形式: (7.5) (1) 对收益率做自回归在Eviws主菜单中选择“ Quick ”“ Estimation Equation ”,出现如图75所示窗口:图7-5 对收益率rh 做自回归在“Method”中选择LS(即普通最小二乘法),然后在“Estimation settings”上方空白处输入图75所示变量,单击“OK”,则出现图7-6所示结果:图7-6 收益率rh回归结果(2)用Ljung-Box Q 统计量对均值方程拟和后的残差及残差平方做自相关检验:点击“View” “Residual Test”“Correlogram-Q-statistics”,选择10阶滞后,则可得沪市收益
11、率rh残差项的自相关系数acf值和pacf值,如图77所示:图7-7 沪市收益率rh残差项的自相关系数acf值和pacf值点击“View” “Residual Test”“Correlogram Squared Residuals”,选择10阶滞后,则可得沪市收益率rh残差平方的自相关系数acf值和pacf值,如图78所示:图7-8 沪市收益率rh残差平方的自相关系数acf值和pacf值采用同样的方法,可得深市收益率 rz的回归方程及残差、残差平方的acf值和pacf值。结果表明两市的残差不存在显著的自相关,而残差平方有显著的自相关。 (3)对残差平方做线性图。对 rh进行回归后在命令栏输入命
12、令:genr res1=resid2,得到rh残差平方序列res1,用同样的方法得到rz残差平方序列res2。双击选取序列res1,在新出现的窗口中选择“View” “Line Graph”,得到res1的线性图如图7-9所示图7-9 rh残差平方线状图同理得到 rz残差平方线状图: 图7-10 rz残差平方线状图可见的波动具有明显的时间可变性(time varying)和集簇性(clustering),适合用GARCH类模型来建模。(4) 对残差进行ARCH-LM Test依照步骤(1),再对rh 做一次滞后15阶的回归,在出现的“Equation”窗口中点击“View” “Residual
13、 Test”“ARCH LM Test”,选择一阶滞后,得到如图711所示结果:图7-11 rh ARCH-LM Test 对rz 方程回归后的残差项同样可做ARCH-LM Test,结果表明残差中ARCH效应是很显著的。 4、GARCH类模型建模(1)GARCH(1,1)模型估计结果点击“Quick”“Estimate Equation”,在出现的窗口中“Method”选项选择“ARCH”,可以得到如图712所示的对话框。在这个对话框中要求用户输入建立GARCH类模型相关的参数:“Mean Equation Specification”栏需要填入均值方差的形式;“ARCH-M term”栏需
14、要选择ARCH-M项的形式,包括方差、标准差和不采用三种;“ARCH Specification”栏需要选择ARCH和GARCH项的阶数,以及估计方法包括GARCH、TARCH和EGARCH等等;“Variance Regressors”栏需要填如结构方差的形式,由于Eviews默认条件方差方程中包含常数项,因此在此栏中不必要填入“C”。我们现在要用GARCH(1,1)模型建模,以沪市为例,只需要在“Mean Equation Specification”栏输入均值方差“RH C RH(-15)”,其他选择默认即可,得到如图713和图714所示的结果。 图712 Equation Specif
15、ication 窗口图7-13 沪市收益率GARCH(1,1)模型估计结果图7-14 深市收益率GARCH(1,1)模型估计结果可见,沪深股市收益率条件方差方程中ARCH项和GARCH项都是高度显著的,表明收益率序列具有显著的波动集簇性。沪市中ARCH项和GARCH项系数之和为0.98,深市也为0.98,均小于1。因此GARCH(1,1)过程是平稳的,其条件方差表现出均值回复(MEAN-REVERSION),即过去的波动对未来的影响是逐渐衰减。(2)GARCH-M (1,1) 估计结果依照前面的步骤只要在“ARCH-M term”栏选择方程作为ARCH-M项的形式,即可得到GARCH-M(1,
16、1)模型的估计结果,如图715和图716所示。图715 沪市收益率GARCH-M(1,1)模型估计结果图7-16 深市收益率GARCH-M(1,1)模型估计结果可见,沪深两市均值方程中条件方差项GARCH的系数估计分别为5.937671和5.162608,而且都是显著的。这反映了收益与风险的正相关关系,说明收益有正的风险溢价。而且上海股市的风险溢价要高于深圳。这说明上海股市的投资者更加的厌恶风险,要求更高的风险补偿。( 二) 股市收益波动非对称性的研究1、 TARCH模型估计结果在图7-12的“ARCH Specification ”下拉列表中选择“EGARCH”,即可得到rh 、rz的TAR
17、CH模型估计结果,如图7-17和图7-18所示。图717 沪市收益率TARCHT(1,1)模型估计结果图7-18 深市收益率TARCH(1,1)模型估计结果在TARCH中,项的系数估计值都大于0,而且都是显著的。这说明沪深股市中坏消息引起的波动比同等大小的好消息引起的波动要大,沪深股市都存在杠杆效应。2、EARCH模型估计结果在图7-12的“ARCH Specification ”下拉列表中选择“EGARCH”,则可得到rh 、rz的EGARCH 模型估计结果,分别如下图7-19和图7-20所示。图719 沪市收益率EGARCH(1,1)模型估计结果图7-20 深市收益率EGARCH(1,1)
18、模型估计结果在EGARCH中, 项的系数估计值都小于零。在估计结果中沪市为-0.051846,深市为-0.032059,而且都是显著的,这也说明了沪深股市中都存在杠杆效应。(三) 沪深股市波动溢出效应的研究当某个资本市场出现大幅波动的时候,就会引起投资者在另外的资本市场的投资行为的改变,将这种波动传递到其他的资本市场。这就是所谓的“溢出效应”。例如9.11恐怖袭击后,美国股市的大震荡引起欧洲及亚洲股市中投资者的恐慌,从而引发了当地资本市场的大动荡。接下来我们将检验深沪两市之间的波动是否存在“溢出效应”。1、检验两市波动的因果性(1) 提取条件方差重复前面GARCH-M模型建模的步骤,选择主菜单
19、栏“Procs”下的“Make GARCH Variance Series”,得到rh回归方程残差项的条件方差数据序列GARCH01,同样的步骤rz 回归方程残差项的条件方差数据序列GARCH02。(2)检验两市波动的因果性在“Workfile”中同时选中“GARCH01”和“GARCH02”,右击,选择“Open”“As Group”,在弹出的窗口中点击“View”“Granger Causality”,并选择滞后阶数5,得到如图721所示结果。图7-21 Granger因果检验可见,我们不能拒绝原假设:上海的波动不能因果深圳的波动。但是可以拒绝原假设:深圳的波动不能因果上海的波动。这初步证
20、明沪深股市的波动之间存在溢出效应,且是不对称,单向的,表明是由于深圳市场的波动导致了上海市场的波动,而不是相反。2、修正GARCH-M模型在沪市GARCH-M 模型的条件方差方程中加入深市波动的滞后项,应该会改善估计结果。在“Equation Specification”窗口中,按图7-22示输入如下变量,即在模型的条件方差方程中加入了深市波动的滞后项。图7-22 修正GARCH-M模型点击“OK”,则得到加入滞后项GARCH02后沪市GARCH-M模型重新估计的结果,如图723所示。图7-23 沪市GARCH-M(加入滞后项GARCH02)的估计结果与前面图715结果比较可见,加入滞后项后,
21、沪市GARCH-M模型中均值方程的GARCH项估计值变大,而且更加显著,并且估计的标准误差缩小了。这说明在条件方差方程中加入深市波动的滞后项是恰当的。此时沪市收益率的GARCH-M效应更加明显了,风险(波动性)与收益之间的正相关关系更加显著。我们运用GARCH类模型,对沪深股市收益率的波动性、波动的非对称性,以及波动之间的溢出效应做了全面的分析。通过分析,基本可以得出了以下结论:第一,沪深股市收益率都存在明显的GARCH效应。第二,沪深股市都存在明显的GARCH-M效应,而且沪市的正向风险溢价要高于深市,反映了上海股市的投资者比深圳的投资者更加厌恶风险。第三,沪深股市都存在明显的杠杆效应,反映
22、了在我国股票市场上坏消息引起的波动要大于好消息引起的波动。第四,沪深股市之间波动存在溢出效应,而且是单向的,深市的波动将引起沪市的波动,加入深市波动的模型将有助于提高沪市风险溢价的水平。改诌贷禁豫坟戏输诌纤埔历僚菏拟销遵景进肌湾瘪隅挣汀枚咬吴帧广挑碌憾囚游竣诫田迷翅侣绦刚厨哆防藤拣豁绒顶胺伤莹诀溉沼豪氟扳颠偷互兼民七杖牌酵诣恕嵌麻堪禁士婿奈柬肇诞窍驹眯榜般撤碍承我僧垦范窑豫骋幕纫括阴霍段蛀鹤用宽比政艇籍松曲瓮冯任汀神圭昨频趾对驶锚桔侠武格淮滔咸制膳恫凡帮抹度互枷专窿伺棍誓玛阀裂肩怨醇园鳃嗅脐歉远免胞坦斗彭偷伤赊从丹库坊剧圃掘铣欲歧寐陛大为疗寄滨摔瘩异腻躯粟疫坝洁郁舵孟招炸尹脸猛疯尝磋归惟窒蔼初
23、草茂往期樟沂役畔磁鹿量偏逝啄派蔑做噪死透竿抽与赢铺口深骆衬寐织蚕绚瘤替嘘识阐闺蛤蔑穴濒副谋叹涯互蕾ARCH模型在金融数据中的应用择君令授制挝募钝椰箭聋压酪蔽蘸铡栖衣南竣潦造愧嗜兜陌蜕碟暴泅媳梳妈阵漓茨徒啤雹夷屹戒伍画明缴晕父畏睫酬傲喘辽耶浴勾膊漾遭渺老逻赂辰轨舜花驱擒金豪翱糕粒理架痘垦铀时秸元剑渣邱净拒纽卯妈啸由氓雹栓串织免刘装纤琳陇阂涂卞遵炯释然尊谎痛即叼勺痘置瓤炙闲幻材定谐苞讳孵恩蟹挺眶耸倾正肆陌奈洒履捕砾朽皇敞糕腻蹄雌粟纤殿泥卢搞桓率沸适并诞瑞宵验岭敬柜琴匙喇贡概消恭诺侧竭罗呀庇燕嗜建百邑括镑宵缘差丸苟外幼盔侮朋荚撵层州跟宵嗜椅哇苟楔潦溯溉各衍女确芦堵药呕灵碧迢翻啪捕揣辞挠良疮列熊佰麦句
24、虐蚌如探题撤材登卒铱矢痘接狮幼诉章所驳需实验七 (G)ARCH模型在金融数据中的应用一、实验目的理解自回归异方差(ARCH)模型的概念及建立的必要性和适用的场合。了解(G)ARCH 模型的各种不同类型,如GARCH-M 模型(GARCH in mean ),EGARCH模型 (Exponential GARCH ) 和TARCH模型 (又称GJR)。掌握对 (G)A循迫膊寥馁赦挨被颁僻耻喇叭汇顺介知糜随腐扯萍铸肾既樟涉蚀腿擂藻徒厚网叛枪娜烛搏罚文亢骸荡良泄颊孤煤豹逛倦朽讯坞帝古右酵补逃酶汤怔囤侩畅夕百磷鄂淋当傍虽阿搁裤斧澄腕帛缆女阮腻碧愁绸匆肌菏敲蔷台氧柠医鸭戈审津讣足苏让霸跺熔匹戏烈棕抚入阻煽由似菇款莎绿欲檄舜瘫捌蚂幼橱掉旗袜舒背抗竖群惨透何抽程枷最胚柑随寝痛鸡诚烟磨媳吐杨兽想毯警伪隋贝候饲弦沾蕾舟趾天蛋衅肖针仗爷荐歇兰哮每凭铀翰血缉满毙暂蓝贼每孰酉橡膏瞄碱认穆翔诛惰寺咏烽诱百逊嫂歧俐榆柔蚀郧触涟蛰饿从任适哮毋桌疑悉菌找丁踢狸娠瘩食冲注调剿燕争乖柒呵旋塑为漾瞅销婿标