资源描述
第一章 有理数
一、全章概况:
本章主要分两部分:有理数的认识,有理数的运算。
二、本章教学目标
1、知识与技能
(1)理解有理数的有关概念及其分类。
(2)能用数轴上的点表示有理数,会比较有理数的大小,会求有理数的相反数与绝对值(绝对值符号内不含字母)。
(3)理解有理数运算的意义和有理数运算律,经历探索有理数运算法则和运算律的过程,掌握有理数的加、减、乘、除、乘方及简单的混合运算(以三步为主),并能运用运算律简化运算。
(4)能运用有理数的有关知识解决一些简单的实际问题。
2、过程与方法
(1)通过实例的引入,认识到数学的发展来源于生产和生活,培养学生热爱数学并自学地学习数学的习惯。
(2)通过对有理数的加、减、乘、除、乘方的学习,培养学生独立思考、认真作业的态度,提高运算能力,逐步激发学生的创新意识。
3、情感、态度与价值观
(1)通过对有理数有关概念的理解,使学生了解正与负、加与减、乘与除的辩证关系,初步感受数学的分类思想。
(2)通过师生互动,讨论与交流,培养学生善于观察、抽象、归纳的数学思想品质,提高分析问题和解决问题的能力。
三、本章重点难点:
1、重点:有理数的运算。
2、难点:对有理数运算法则的理解(特别是混合运算中符号的确定)。
四、本章教学要求
认识有理数,首先是引入负数,必须从学生熟知的现实生活中,挖掘具有相反意义的量的资源,让学生有真切的感受,然后才引出用正负数表示这些具有相反意义的量,在理解有理数的意义时,注意运算数轴这个直观模型。
无论是有理数的认识,还是有理数运算的教学,都应设法让学生参与到“观察、探索、归纳、猜测、分析、论证、应用”等数学活动中来,并适时搭建“合作交流”的平台,让学生在学习数学中,动脑想、动手做、动口说,力求让学生自己建立个性化的认识结构。
在有理数的运算教学中,应鼓励学生自己探索运算法则和运算律,并通过适量的练习巩固,提倡算法多样化,反对做繁难的笔算,遇到较为复杂的计算应指导使用计算器。
注意教学反思。关注学生的学习过程,及时调整教学,促进师生共同改进。
第 一 课 时
教学内容:§1.1 具有相反意义的量
教学目标:
1、知识与技能
(1)通过实例,感受引入负数的必要性和合理性,能应用正负数表示生活中具有相反意义的量。
(2)理解有理数的意义,体会有理数应用的广泛性。
2、过程与方法
通过实例的引入,认识到负数的产生是来源于生产和生活,会用正、负数表示具有相反意义的量,能按要求对有理数进行分类。
重点、难点:
1、重点:正数、负数有意义,有理数的意义,能正确对有理数进行分类。
2、难点:对负数的理解以及正确地对有理数进行分类。
教学过程:
一、创设情景,导入新课
大家知道,数学与数是分不开的,现在我们一起来回忆一下,小学里已经学过哪些类型的数?
学生答后,教师指出:小学里学过的数可以分为三类:自然数(正整数)、分数和零(小数包括在分数之中),它们都是由于实际需要而产生的.
为了表示一个人、两只手、……,我们用到整数1,2,……
为了表示“没有人”、“没有羊”、……,我们要用到0.
但在实际生活中,还有许多量不能用上述所说的自然数、零或分数、小数表示。
二、合作交流,解读探究
1、某市某一天的最高温度是零上5℃,最低温度是零下5℃。要表示这两个温度,如果只用小学学过的数,都记作5℃,就不能把它们区别清楚。它们是具有相反意义的两个量。
现实生活中,像这样的相反意义的量还有很多……例如,珠穆朗玛峰高于海平面8848米,吐鲁番盆地低于海平面155米,“高于”和“低于”其意义是相反的。 “运进”和“运出”,其意义是相反的。
同学们能举例子吗?
学生回答后,教师提出:怎样区别相反意义的量才好呢?
待学生思考后,请学生回答、评议、补充。
教师小结:同学们成了发明家.甲同学说,用不同颜色来区分,比如,红色5℃表示零下5℃,黑色5℃表示零上5℃;乙同学说,在数字前面加不同符号来区分,比如,△5℃表示零上5℃,×5℃表示零下5℃…….其实,中国古代数学家就曾经采用不同的颜色来区分,古时叫做“正算黑,负算赤”.如今这种方法在记账的时候还使用.所谓“赤字”,就是这样来的。
现在,数学中采用符号来区分,规定零上5℃记作+5℃(读作正5℃)或5℃,把零下5℃记作-5℃(读作负5℃)。这样,只要在小学里学过的数前面加上“+”或“-”号,就把两个相反意义的量简明地表示出来了。
让学生用同样的方法表示出前面例子中具有相反意义的量:
高于海平面8848米,记作+8848米;低于海平面155米,记作-155米;
教师讲解:什么叫做正数?什么叫做负数?强调,数0既不是正数,也不是负数,它是正、负数的界限,表示“基准”的数,零不是表示“没有”,它表示一个实际存在的数量。并指出,正数,负数的“+”“-”的符号是表示性质相反的量,符号写在数字前面,这种符号叫做性质符号。
2、给出新的整数、分数概念
引进负数后,数的范围扩大了。过去我们说整数只包括自然数和零,引进负数后,我们把自然数叫做正整数,自然数前加上负号的数叫做负整数,因而整数包括正整数(自然数)、负整数和零,同样分数包括正分数、负分数。
3、给出有理数概念
整数和分数统称为有理数。
4、有理数的分类
为了便于研究某些问题,常常需要将有理数进行分类,需要不同,分类的方法也常常不同根据有理数的定义可将有理数分成两类:整数和分数。有理数还有没有其他的分类方法?
待学生思考后,请学生回答、评议、补充。
教师小结:按有理数的符号分为三类:正有理数、负有理数和零。在有理数范围内,正数和零统称为非负数。向学生强调:分类可以根据不同需要,用不同的分类标准,但必须对讨论对象不重不漏地分类。
三、应用迁移,巩固提高
例 下列给出的各数,哪些是正数?哪些是负数?哪些是整数?哪些是分数?哪些是有理数?-8.4,22,+,0.33,0,-,-9
课堂练习:课本P6练习
四、总结反思
引导学生回答如下问题:本节课学习了哪些基本内容?学习了什么数学思想方法?应注意什么问题?
由于实际生活中存在着许多具有相反意义的量,因此产生了正数与负数。正数是大于0的数,负数就是在正数前面加上“-”号的数,负数小于0。0既不是正数,也不是负数,0可以表示没有,也可以表示一个实际存在的数量,如0℃。
五、课后作业:课本P6习题1.1A第1、2、3题。
第 二 课 时
教学内容:§1.2数轴、相反数与绝对值(1)
教学目标:
1、知识与技能
(1)掌握数轴的三要素,会用数轴上的点表示给定的有理数,会根据数轴上的点读出所表示的有理数。
(2)理解任何有理数都可以用数轴上唯一的一个点表示出来。
(3)初步理解数形结合的数学思想。
2、过程与方法
通过游戏,得出本节课所要学习的内容-数轴,感受把实际问题抽象成数学问题,激发学生的学习兴趣。
重点、难点
1、重点:数轴的概念及其画法。
2、难点:数轴的画法以及有理数与数轴上的点的对应关系。
教学过程:
一、创设情景,导入新课
1.小学里曾用“射线”上的点来表示数,你能在射线上表示出1和2吗?
2.用“射线”能不能表示有理数?为什么?
3.你认为把“射线”做怎样的改动,才能用来表示有理数呢?
待学生回答后,教师指出,这就是我们本节课所要学习的内容——数轴。
二、合作交流,解读探究
让学生观察挂图——放大的温度计,同时教师给予语言指导:利用温度计可以测量温度,在温度计上有刻度,刻度上标有读数,根据温度计的液面的不同位置就可以读出不同的数,从而得到所测的温度.在0上10个刻度,表示10℃;在0下5个刻度,表示-5℃.
与温度计类似,我们也可以在一条直线上画出刻度,标上读数,用直线上的点表示正数、负数和零。具体方法如下(边说边画):
1.画一条水平的直线,在这条直线上任取一点作为原点(通常取适中的位置,如果所需的都是正数,也可偏向左边)用这点表示0(相当于温度计上的0℃);
2.规定直线上从原点向右为正方向(箭头所指的方向),那么从原点向左为负方向(相当于温度计上0℃以上为正,0℃以下为负);
3.选取适当的长度作为单位长度,在直线上,从原点向右,每隔一个长度单位取一点,依次表示为1,2,3,…从原点向左,每隔一个长度单位取一点,依次表示为-1,-2,-3,…
提问:我们能不能用这条直线表示任何有理数?(可列举几个数)
在此基础上,给出数轴的定义,即规定了原点、正方向和单位长度的直线叫做数轴.
进而提问学生:在数轴上,已知一点P表示数-5,如果数轴上的原点不选在原来位置,而改选在另一位置,那么P对应的数是否还是-5?如果单位长度改变呢?如果直线的正方向改变呢?
通过上述提问,向学生指出:数轴的三要素——原点、正方向和单位长度,缺一不可。
三、应用迁移,巩固提高
1、组织学生讨论下列所画的数轴是否正确?如果不正确,指出错在哪里?
学生活动:学生分组讨论。
归纳:图A所画的数轴缺少单位长度,图B所画的数轴缺少正方向,图D所画的数轴单位长度不一致。
学生讨论:数轴上的点是不是都表示有理数?
教师指出:任何有理数都可以用数轴上的唯一的一个点来表示,但数轴上的点不一定都表示有理数。
2、P9第1、2题:
例1、 指出数轴上的点M、P、Q分别表示哪个有理数?
例2、画一条数轴,把有理3,1.5,-1.5用数轴上的点表示来。
学生活动:在练习本上完成这两道题,并与同桌进行交流。
教师活动:任请一位同学说出例1的答案并进行全班交流,然后再请一位同学到黑板演示例2的解答。师生共同订正,培养学生数形结合的思想。
3、课堂练习:课本P10第1、2题
最后引导学生得出结论:正有理数可用原点右边的点表示,负有理数可用原点左边的点表示,零用原点表示.
四、总结反思
指导学生阅读教材后指出:数轴是非常重要的数学工具,它使数和直线上的点建立了对应关系,它揭示了数和形之间的内在联系,为我们研究问题提供了新的方法。
本节课要求同学们能掌握数轴的三要素,正确地画出数轴,在此还要提醒同学们,所有的有理数都可用数轴上的点来表示,但是反过来不成立,即数轴上的点并不是都表示有理数,至于数轴上的哪些点不能表示有理数,这个问题以后再研究。
五、课后作业
课本P13习题1.2A组第1题
第 三 课 时
教学内容:§1.2数轴、相反数与绝对值(2)
教学目标:
1、知识与技能 :(1)借助数轴理解相反数的概念,会求一个数的相反数。
(2)培养学生观察、猜想、验证等能力,初步形成数形结合的思想。
2、过程与方法:在教师的指导下,让学生通过观察、比较,归纳出相反数的概念和性质。
重点、难点
1、重点: 理解相反数的意义,会求一个数的相反数。
2、难点: 对相反数意义的理解。
教学过程:
一、创设情景,导入新课
1、[游戏导入]请两位同学背靠背,一个向左走5步,另一个向右走5步,如果向右走为正,向左、向右分别记作什么?(生答:+5、-5),+5与-5这样成对出现的数就是为们今天要学习的相反数。
二、合作交流,解读探究
1、(出示小黑板)
教师提出问题:上图中数轴上的点B和点D表示的数各是什么?有什么关系?
学生活动:分小组讨论,与同伴交流。
教师活动:请几位同学说出他们讨论的结果,指出点B表示+2.6,点D表示-2.6,它们只有符号不同,到原点的距离都是2.6。
2、(板书):如果两个数只有符号不同,那么我们将其中一个数叫做另一个数的相反数,也称这两个数互为相反数。
0的相反数是0
3、学生活动:在数轴上,表示互为相反数的两个点有什么关系?
学生代表回答后,小结:在数轴上,表示互为相反数的两个点,位于原点的两侧,并且与原点的距离相等。
4、练习(小黑板)填空:
3的相反数是 ; -6的相反数是 ;
的相反数是 ;-(-3)= ;
-(-0.8)= ;-()= ;
学生活动:在练习本上解答,并与同伴交流,师生共同订正。
归纳:化简多重符号时,一个正数前不管有多少个“+”号,都可全部省去不写;一个数前有偶数个“-”号,也可以把“-”号一起去掉;一个正数前面有奇数个“-”号,则化简后只保留一个“-”号。
三、应用迁移,巩固提高
1、课本P12第1题
2、填空:
①的相反数是 ; ② 的相反数是;
③若-x=10,则x的相反数在原点的 侧。
四、总结反思
本节课学习了相反数的意义,并认识了相反数在数轴上的特征,数a的相反数是-a,0的相反数是0,在数轴上,表示互为相反数(零除外)的两个点,位于原点的两侧,并且到原点的距离相等。
五、课后作业
课本P13习题1.2A组第2、4题
第 四 课 时
教学内容:§1.2数轴、相反数与绝对值(3)
教学目标:
1、知识与技能:(1)借助数轴初步理解绝对值的概念,能求一个数的绝对值。
(2)通过应用绝对值解决实际问题,体会绝对值的意义和作用。
2、过程与方法
通过观察实例及绝对值的几何意义,探索一个的绝对值与这个数之间的关系,培养学生语言描述能力。
重点、难点: 1、重点:正确理解绝对值的概念,能求一个数的绝对值。:
2、难点:正确理解绝对值的几何意义和代数意义。
教学过程:
一、创设情景,导入新课
(学生练习)
1、下列各数中:
+7,-2,,-8.3,0,+0.01,-,1,哪些是正数?哪些是负数?哪些是非负数?
2、什么叫做数轴?画一条数轴,并在数轴上标出下列各数:
-3,4,0,3,-1.5,-4,,2
3、问题2中有哪些数互为相反数?从数轴上看,互为相反数的一对有理数有什么特点?
4、怎样表示一个数的相反数?
二、合作交流,解读探究
1、两辆汽车,第一辆沿公路向东行驶了5千米,第二辆向西行驶了4千米,为了表示行驶的方向(规定向东为正)和所在位置,分别记作+5千米和-4千米。这样,利用有理数就可以明确表示每辆汽车在公路上的位置了。
我们知道,出租汽车是计程收费的,这时我们只需要考虑汽车行驶的距离,不需要考虑方向。当不考虑方向时,两辆汽车行驶的距离就可以记为5千米和4千米(在图上标出距离),这里的5叫做+5的绝对值,4叫做-4的绝对值。
(挂出小黑板:课本P11图)
如上图,学校位于数轴的原点处,小光、小明、小亮家分别位于点A、B、C处,单位长度表示1千米。
教师活动:提问,小光、小明、小亮家分别距学校多远?
学生活动:分小组讨论,每位同学说出自己的结论,并与同伴交流。
教师:在数轴上,一个数所对应的点与原点的距离叫做该数的绝对值。如在数轴上,小光家所在的位置对应的数是-2,与原点的距离是2,那就是说,-2的绝对值是2,记作=2;小明家所在的位置对应的数是+1,与原点的距离是1,那就是说+1的绝对值是1,记作=1。
提问:互为相反数的两个数的绝对值有什么关系?
学生口答,师生共同订正。
2、探索绝对值的性质
例1、试一试,填空:
= ; = ; = ;
=
= ; = ;= ;
教师提出问题:你能从上面的解答中发现什么规律吗?
提出:所得的结果与绝对值符号内的数有什么关系?鼓励学生观察例1,并根据绝对值的概念得出结论,并用自己的语言描述所得的结论。
3、教师活动:肯定学生的做法,最后归纳结论。
正数的绝对值是它本身,如:=12
0的绝对值是0
负数的绝对值是它的相反数,如:=7.5
三、应用迁移,巩固提高
1、例2,绝对值等于8.7的有理数有哪些?
学生活动:在练习本上解答,同伴交换见解,教师巡视。
教师了解学生的情况,然后指出并板书:互为相反数的两个数的绝对值相等。
2、练习:课本P12第2题。
四、总结反思
请部分同学回顾本节课所学内容,小结:
1、绝对值的概念。 2、绝对值的性质:
正数的绝对值是它本身; 0的绝对值是0;负数的绝对值是它的相反数。
五、作业
课本P13习题1.2A组第3题。
第 五 课 时
教学内容:§1.3有理数的大小比较
教学目标:
1、知识与技能
会比较两个(或几个)有理数的大小。
2、过程与方法
通过具体实例,抽象出比较两个有理数大小的方法。利用数轴,会比较几个有理数的大小,进一步培养学生数形结合的数学思想方法,提高学生学习兴趣。
重点、难点
1、重点: 掌握有理数大小的比较法则。
2、难点: 比较两个负数的大小。
教学过程:
一、创设情景,导入新课
1、数轴包括哪几个要素?怎么画?
2、大于0的数在数轴上位于原点的哪一侧?小于0的数呢?
3、问:如何比较两个正数的大小?
(1)珠穆朗玛峰与吐鲁番盆地的示意图,问:哪个地方高?
(2)温度计示意图:-3℃与5℃哪个温度高?
上述两个问题,实际是比较8844.43与-155的大小,以及5与-3的大小,像这样的问题实际上是比较两个有理数在大小(板书课题)。
二、合作交流,解读探究
1、(出示两个不同温度的温度计挂图)在温度计上显示的两个温度,上边的温度总比下边的温度高,例如,5℃在-2℃上边, 5℃高于-2℃;-1℃在-4℃上边,-1℃高于-4℃。
下面的结论引导学生把温度计与数轴类比,自己归纳出来:
(1)在数轴上表示的两个数,右边的数总比左边的数大.
(2)正数都大于零,负数都小于零,正数大于负数。
例1、在数轴上画出表示下列各数的点,并用“<”把它们连接起来。
4.5,6,-3,0,-2.5,-4
通过此例引导学生总结出“正数都大于0,负数都小于0,正数大于一切负数”的规律.要提醒学生,用“<”连接两个以上数时,小数在前,大数在后,不能出现5>0<4这样的式子.
2、利用数轴我们已经会比较有理数的大小。
由上面数轴,我们可以知道-4<-3<0.4<3,其中-4,-3都是负数,它们的绝对值哪个大?显然>|—3|引导学生得出结论:
两个正数比较,绝对值大的数大;
两个负数比较,绝对值大的反而小。
这样以后在比较负数大小时就不必每次再画数轴了
三、应用迁移,巩固提高
例2(P16例)、比较下列每一结数的大小
1、-100与0.01; 2、-100与-3 3、与。
学生活动:在练习本上解答。
教师活动:让学生各自独立思考,然后请三名学生到黑板上分别解答,待学生解答完后,再请全班学生交流讨论其正确性。
解:1、-100<0.01;
2、因为=100,=3,而100>3,所以 -100<-3;
3、=≈0.667,==0.6,而0.667>0.6,所以<。
练习:课本P16-P17练习第1、2。
四、总结反思
先由学生叙述比较有理数大小的两种方法——利用数轴比较大小和利用绝对值比较大小,然后教师引导学生得出:比较两个有理数的大小,学习了绝对值以后,就可以不必利用数轴来比较两个有理数的大小了:正数大于一切负数;两个负数,绝对值大的反而小。
五、作业
课本P17习题1.3A第2、3、4题。
第 六 课 时
教学内容:§1.4 有理数的加法(1)
教学目标:
1、知识与技能: 理解有理数加法法则,能熟练地进行简单的有理数的加法运算。
2、过程与方法: 在现实背景中理解有理数加法的意义,能正确地进行有理数的加法运算。
重点、难点: 1、重点:和的符号的确定。
2、难点: 异号两数相加。
教学过程:
一、创设情景,导入新课
中国国家足球队在两场友谊比赛中,第一场净胜2球,第二场净负1球,请问两场比赛后,中国国家足球队合计胜几球?
你能否用一个算式来表示最终结果?如何表示?这个算式与小学时学过的加法有何不同?由此引出课题。
二、合作交流,解读探究
1、出示课本P19中的引例,请同学们阅读、讨论问题(1),用自己的语言叙述同号两数相加的方法,教师归纳法则。
1、同号两数相加,取相同的符号,并且把它们的绝对值相加。
2、继续考虑引例中(2)、(3)怎么用算式表示?
类比于同号两数相加法则,由学生讨论、归纳异号两数相加法则,教师可对确定符号和确定绝对值的值两部分作适当的提示,启发学生观察和的符号,绝对值和两个加数的符号与绝对值的关系。教师归纳法则,并进一步提出问题:两个有理数相加,除了同号、异号两种情况外,还有什么情形?引导学生从数的正、零、负三类情形进行讨论。
教师完整地板书有理数的加法法则,并指出建立有理数加法的必要性和法则的合理性。
2、异号两数相加,绝对值不相等时,取绝对值较大的加数的符号,并且用较大的绝对值减去较小的绝对。
3、互为相反数的两个数相加得0。
4、一个数与0相加,仍得这个数。
然后让学生朗读法则。
3、用引例的数据讲述有理数加法的数轴表示,更直观地反映有理数加法法则的合理性。
三、应用迁移,巩固提高
例1 计算下列各式:
(1) (一8)+(一12); (2) (一3.75)+(-0.25);
(3)(一5)+9; (4)(-10)+7
教师注意解答过程的示范,然后完成课本的P21“练习”,分别请三位同学上台板演,每人两小题。
例(补充) 小慧原来在银行存有零用钱350元,上个月取出了120元,这个月计划再存人50元,请用有理数的加法计算:
(1)到上月底小慧在银行还有多少存款?
(2)到这个月底小慧将有多少存款?
四、总结反思
1.有理数的加法法则;
2.有理数加法的数轴表示;
3.有理数相加,先确定符号,再算绝对值;
4.有理数的加法运算,和不一定大于加数。
五、课后作业
课本P24习题1.4A组第1题
第 七 课 时
教学内容:§1.4 有理数的加法(2)
教学目标:
1、知识与技能: 理解有理数加法的运算律,能熟练地运用运算律简化有理数加法的运算,能灵活运用有理数的加法解决简单实际问题。
2、过程与方法: 经过有理数加法运算律的探索过程,了解加法的运算律,能用运算律简化运算。
重点、难点: 1、重点:运算律的理解及合理、灵活的运用。
2、难点:合理运用运算律。
教学过程:
一、创设情景,导入新课
1、叙述有理数的加法法则。
2、“有理数加法”与小学里学过的数的加法有什么区别和联系?
答:进行有理数加法运算,先要根据具体情况正确地选用法则,确定和的符号,这与小学里学过的数的加法是不同的;而计算“和”的绝对值,用的是小学里学过的加法或减法运算。
二、合作交流,解读探究
1、计算下列各题,并说明是根据哪一条运算法则?
(1) (-9.18)+6.18; (2) 6.18+(-9.18); (3) (-2.37)+(-4.63)
2、计算下列各题:
(1) [8+(-5)]+(-4); (2) 8+[(-5)+(-4)];
(3) [(-7)+(-10)]+(-11); (4) (-7)+[(-10)+(-11)];
(5) [(-22)+(-27)]+(+27); (6) (-22)+[(-27)+(+27)].
通过上面练习,引导学生得出:
交换律——两个有理数相加,交换加数的位置,和不变。
用代数式表示上面一段话:
a+b=b+a
运算律式子中的字母a,b表示任意的一个有理数,可以是正数,也可以是负数或者零.在同一个式子中,同一个字母表示同一个数。
结合律——三个数相加,先把前两个数相加,或者先把后两个数相加,和不变.
用代数式表示上面一段话:
(a+b)+c=a+(b+c)
这里a,b,c表示任意三个有理数。
根据加法交换律和结合律可以推出:三个以上的有理数相加,可以任意交换加数的位置,也可以先把其中的几个数相加。
三、应用迁移,巩固提高
例(P22例2) 计算:
(1) 33+(-2)+7+(-8)
(2) 4.375+(-82)+( -4.375)
引导学生发现,在本例中,把正数与负数分别结合在一起再相加,有相反数的先把相反数相加;能凑整的先凑整;有分母相同的,先把同分母的数相加,计算就比较简便。
本例先由学生在笔记本上解答,然后教师根据学生解答情况指定几名学生板演,并引导学生发现,简化加法运算一般是三种方法:首先消去互为相反数的两数(其和为0),同号结合或凑整数。
例2(P23例3)
教师通过启发,由学生列出算式,再让学生思考,如何应用运算律,使计算简便。第一问可以让学生自已作行程示意图帮助理解,注意第一问和第二问的区别。
练习 课本P.24练习:1、2
四、总结反思
本节课你有哪些收获?
五、作业
1、课本P24习题1.4A组第2、3题
2、课本P24习题1.4B组第2题
第 八 课 时
教学内容:§1.5 有理数的减法(1)
教学目标:
1、知识与技能: (1)通过学生熟悉的问题情景,以过探索有理数减法法则得出的过程,理解有理数减法法则的合理性。
(2)能熟练进行有理数的减法法则。
2、过程与方法
通过实例,归纳出有理数的减法法则,培养学生的逻辑思维能力和运算能力,通过减法到加法的转化,让学生初步体会人归的数学思想。
重点、难点
1、重点:有理数减法法则及其应用。
2、难点:有理数减法法则的应用符号的改变。
教学过程:
一、创设情景,导入新课
1、有理数加法运算是怎样做的?
2、珠穆朗玛峰比吐鲁番盆地高多少米?
导语:可见,有理数的减法运算在现实生活中也有着很广泛的应用。(出示课题)
二、合作交流,解读探究
1、学生独立看书,自学课本P.25~P.26
交流:(1)珠穆朗玛峰比吐鲁番盆地高多少米?题怎样列式?
8844.43-(-155)=8844.43+155
(2)潜水员甲比潜水员乙高多少米?又怎样列式?
-10-(-20)=-10+20
由以上式子可知,减去-155等于加155;减去-20等于加20;你能得出什么规律?
学生相互讨论,指定代表发言。
得出结论: 减去一个数等于加上这个数的相反数
教师提问、启发:(1)法则中的“减去一个数”,这个数指的是哪个数?“减去”两字怎样理解?(2)法则中的“加上这个数的相反数”“加上”两字怎样理解?“这个数的相反数”又怎样理解?(3)你能用字母表示有理数减法法则吗?
三、应用迁移,巩固提高
1、P.26例1 计算:
相反数
(1) 0-(-3.18) (2)(-10)-(-6) (3)-
解:(1)0-(-3.18)=0+3.18=3.18
减法转为加法
相反数
减法转为加法
(2)(-10)-(-6)=(-10)+6=-4
(3)-=+=1
2、P.26例2 某市元月中旬的平均气温是5℃,元月下旬因有寒流,预计气温将下降6~9℃,预计元月下旬的平均气温在什么范围内?
(理解、列式、计算)
解: 5-6=5+(-6)=-1
5-9=5+(-9)=-4
答:该市元月下旬的平均气温在零下4℃到零下1℃之间。
3、课内练习:P.27 第一行始的练习
4、游戏:两人一组,用扑克牌做有理数减法运算游戏(每人27张牌,黑牌点数为正数,红牌点数为负数,王牌点数为0。每人每次出一张牌,两人轮流先出(先出者为被减数),先求出这两张牌点数之差者获胜,直至其中一人手中无牌为止)。
四、总结反思
(1) 有理数减法法则:减去一个数,等于加上这个数的相反数。
(2) 有理数减法的步骤:先变为加法,再改变减数的符号,最后按有理数加法法则计算。
五、作业
P.28习题1.5A组1、2
第 九 课 时
教学内容:§1.5 有理数的减法(2)
教学目标:
1、知识与技能
进一步理解有理数加法法则和减法法则,能熟练地进行有理数加减的混合运算,提高运算能力。
2、过程与方法
经过探索有理数的加减混合运算,使学生弄清加法和减法的运算可以统一成加法运算。加法运算可以省略括号及括号前的“+”号。
重点、难点: 1、重点:有理数加减法的混合运算。
2、难点:有理数加减法的混合运算。
教学过程:
一、创设情景,导入新课
1、(小黑板)一架飞机作特技表演,起飞后的高度变化如下表:
高度变化
记作
上升4.5千米
+4.5千米
下降3.2千米
-3.2千米
上升1.1千米
+1.1千米
下降1.4千米
-1.4千米
此时飞机比起飞点高多少千米?
2、学生分小组讨论这个总量,学生根据表中右表赢余的有理数相加求和,易得此时飞机比起飞点高的高度为:
(+4.5)+(-3.2)+1.1+(-1.4)=1(千米)
3、教师引导学生根据高度变化情况,起点定为0,上升用加法运算,下降用减法运算,也可求出此时飞机比起飞点高的高度:
0+4.5-3.2+1.1-1.4
=1.3+1.1-1.4
=2.4-1.4
=1(千米)
二、合作交流,解读探究
1、教师提出问题:比较以上两种算法,你发现了什么?
2、师生共同分析:我们发现:
4.5-3.2+1.1-1.4 =(+4.5)+(-3.2)+1.1+(-1.4)
这个等式左边是加减混合运算,等式右边只有加法运算,也就是说,对有理数的加减混合运算统一成了加法运算,反过来,等式
(+4.5)+(-3.2)+1.1+(-1.4)=4.5-3.2+1.1-1.4 也成立,这就是说,如果式子是几个正数或负数的和的形式,加号可以省略,这个数的括号也可以省略。
但要注意在4.5-3.2+1.1-1.4式子中的“+”“-”应看作性质符号,即把式子看作+4.5,-3.2,+1.1,-1.4的和,称为代数和,读作“正4.5,负3.2,正1.1,负1.4”或者读作“正4.5减3.2加1.1减1.4”。
三、应用迁移,巩固提高
1、计算:(1)(-8)-(-3)+7-2 (2)3.12-3.08-(-4.88)
学生先在练习本上解答,然后分小组交流不同的解法并进行比较
2、计算:--(-)+(-)
教师引导学生运用用加法交换律和结合律来简化运算
解:原式=+(-)++(-)
=(+)+[(-)+(-)]
=1-
=
教师指出:此题交换-和的位置,目的是命名同分母的分数先相加,简化运算。但要注意在交换数的位置时,要连同它前面的符号一起交换。
练习:课本P.27~P.28第1、2题
四、总结反思
本节课我们是在学习有理数加法和减法的基础上,进一步学习将有理数加减混合运算统一成加法运算,以及把式子写成省略加号和括号的形式。注意在有理数加减混合运算时,一般先应转换为加法运算,然后省略括号,再计算。
五、作业:P.29习题1.5A组经4、5、6题
第 十 课 时
教学内容:§1.6 有理数的乘法
教学目标:
1、知识与技能
使学生理解有理数乘法的意义,掌握有理数的乘法法则,能熟练地进行有理数的乘法运算。
2、过程与方法
经历探索有理数乘法法则的过程,理解有理数乘法法则,发展观察、探究、合情推理等能力,会进行有理数和乘法运算。
重点、难点: 1、重点:有理数乘法法则。
2、难点:有理数乘法意义的理解,确定有理数乘法积的符号。
教学过程:
一、创设情景,导入新课
1、由前面的学习我们知道,正数的加减法可以扩充到有理数的加减法,那么乘法是可也可以扩充呢?
乘法是加法的特殊运算,例如5+5+5=5×3,那么请思考:
(-5)+(-5)+(-5)与(-5)×3是否有相同的结果呢?本节课我们就来探究这个问题。
3、在一条由西向东的笔直的马路上,取一点O,以向东的路程为正,则向西的路程为负,如果小玫从点O出发,以5千米的向西行走,那么经过3小时,她走了多远?
二、合作交流,解读探究
1、小学学过的乘法的意义是什么?
乘法的分配律:a×(b+c)=a×b+a×c
如果两个数的和为0,那么这两个数 互为相反数 。
2、由前面的问题3,根据小学学过的乘法意义,小玫向西一共走了 (5×3)千米,即(-5)×3=-(5×3)
3、学生活动:计算3×(-5)+3×5,注意运用简便运算
通过计算表明3×(-5)与3×5互为相反数,从而有
3×(-5)=-(3×5),由此看出,3×(-5)得负数,并且把绝对值3与5相乘。
类似的,(-5)×(-3)+(-5)×3=(-5)×[(-3)+3]=0
由此看出(-5)×(-3)得正数,并且把绝对值5与3相乘。
4、提出:从以上的运算中,你能总结出有理数的乘法法则吗?
鼓励学生自己归纳,并用自己的语文舞衫歌扇,并与同伴交流。
在学生猜测、归纳、交流的过程中及时引导、肯定
两数相乘,同号得正,异号得负,绝对值相乘。
任何数与0相乘,积仍为0
(板书)有理数乘法法则:
三、应用迁移,巩固提高
1、计算
(-5)×(-4) 2×(-3.5) × (-0.75)×0
(1)学生根据乘法法则,在练习本上完成。指定四位同学到黑板演习。
(2)教师:要求学生明确算理,学生做练习时,教师巡视,及时引导。
2、计算下列各题
① (-4)×5×(-0.25) ② ×()×(-2)
③ ×()×0×()
指定三名同学在黑板上做,使学生明确,做有理数的乘法时,要先确定积的符号,再求出积的绝对值。
教师提出问题:几个有理数相乘时,因数都不为0时,积是多少?
学生小结后,教师归纳:
几个不为0的有理数相乘,积的符号由负因数的符号决定,负因数有奇数个时,积为负;负因数有偶数个时,积为正;只要有一个因数为0,则积为0
练习:课本P32练习
四、总结反思(学生先小结)
1、有理数乘法法则
2、有理数乘法的一般步骤是:
(1)确定积的符号; (2)把绝对值相乘。
五、作业:P25习题1.6 A组 1、2
第 十 一 课 时
教学内容:§1.6 有理数的乘法(2)
教学目标:
1、知识与技能: 经历探索乘法运算律的过程,进一步发展观察、验证、猜想、归纳的能力,促使学生学好乘法运算律及多个有理数相乘积的符号的确定。
2、过程与方法: 运用乘法的运算律简化乘法运算。
重点、难点: 1、重点:乘法运算律的理解和运用
2、难点:乘法运算律的灵活运用及运算中符号的确定。
教学过程:
一、创设情景,导入新课
复习:有理数的乘法法则,互为倒数的定义,两个有理数相乘积的符号的确定。
二 、合作交流,解读探究
1、做一做:P32“做一做”填空,并比较她们的结果。
<1> (-2) ×7= , 7×(-2)=
(-3)×(-4)= ,(-4)×(-3)=
师:由上面的两组式子,我们发现了什么规律?
生:乘法满足交换律。
<2> [3×(-4)]×(-5)= ×(-5)=
3×[(-4)×(-5)]=3× =
师:由上面的两组式子,我们发现了什么规律?
学:乘法满足结合律。
<3>(-6)×[4+(-9)]=(-6)× =
(-6)×4+(-6)×(-9)= + =
师:由上面的两组式子,我们发现了什么规律?
学:乘法满足分配律2、想一想:<1>由上面的几道题,我们已经知道了在有理数运算中,乘法的交换律、结合律以及分配律均成立。那么同学们现在再给你们几分钟的时间,你们分别写出满足乘法的交换律、结合律以及分配律的式子。
2、刚才我们都是通过具体的数来表示乘法的
展开阅读全文