1、第43卷第3期2023年6 月文章编号:10 0 0-130 1(2 0 2 3)0 3-0 150-11地震工程与工程振动EARTHQUAKE ENGINEERING ANDENGINEERING DYNAMICSVol.43 No.3Jun.2023D0I:10.13197/j.eeed.2023.0315面内端部激励下斜拉索振动方程推导与求解朱付祥,易江(广州大学土木工程学院,广东广州510 0 0 6)摘要:为精确描述面内端部激励下拉索非线性振动机制,构建抽象端部激励下的拉索力学描述模型,分别推导了拉索拟静态振动和模态振动控制方程,基于有限差分法给出了拉索模态振动的数值求解方法。由于垂
2、度效应的影响,在轴向、竖向以及轴向和竖向共同激励下拉索的拟静态索力与端部位移采用一个非线性方程予以表征。拉索拟静态振动可视作外部激励施加在拉索上,引起拉索的非线性模态振动,通过理论推导分别求得模态振动的控制方程和变形协调方程。在模态振动过程中,拉索的动力特性(如刚度和周期)不断变化,索力和拉索变形相互耦合,使得其求解非常复杂。采用有限差分法进行数值求解,并基于有限元方法验证了数值求解方法的准确性。重点讨论了拉索模态振动共振机制,结果表明,在轴向、竖向以及轴向和竖向激励下,拉索模态振动存在多个共振区域,包括小周期、0.5T,、T,和2 T,等(T,为成桥状态下拉索基本振动周期);在共振区域内,拉
3、索振动索力幅度较大,模态振动对总索力的贡献系数较高,超过0.4,在实际工程中不容忽视;拉索阻尼对模态振动的影响较大,增加拉索阻尼比将改变拉索模态振动的幅频特征,模态振动索力及其贡献系数均有所降低,但降低程度受激励幅度的影响较大。关键词:桥梁工程;参数振动;振动方程;斜拉索;面内端部激励;共振周期中图分类号:U442.5*5;U 448.2 7文献标识码:ADerivation and solution of vibration equations forstayed cables under in-plan end support excitationsZHU Fuxiang,YI Jiang
4、(College of Civil Engineering,Guangzhou University,Guangzhou 510006,China)Abstract:This study aims to accurately reproduce the nonlinear vibration mechanism of stayed cables underin-plane end excitation.The mechanical description model of the cable is established under end excitation and thequasi-st
5、atic vibration and modal vibration equations of the cable are derived respectively.The numerical solutionmethod of cable parametric vibration is illustrated using the finite difference method.Due to the sag effect,thereexists a highly nonlinear relationship between the quasi-static cable force and e
6、nd displacement under axial,verticaland axial-vertical excitations,under which the nonlinearity can be characterized by a nonlinear equationrespectively.The quasi-static vibration of the cable can be regarded as an external force applied to the cable,whichcauses the nonlinear modal vibration of the
7、cable.Through theoretical derivation,both the governing equation ofmotion and the compatibility can be obtained.In the process of modal vibration,the dynamic characteristics of thecable(such as stiffness and period)are continuously varying,and the cable force and deformation are highlycoupled,which
8、makes the solution of the modal vibration equations extremely complicated.The finite difference收稿日期:2 0 2 2-0 6-13;修回日期:2 0 2 2-11-2 9基金项目:国家青年科学基金项目(52 10 0 8 0 0 18);广东省教育厅(2 0 2 1KQNCX069);广州市教育局(2 0 2 0 32 7 97);广州市科技计划(202102020594)Supported by:National Natural Science Foundation of China(52100
9、80018);Department of Education of Guangdong Province(2021KQNCX069);Education Bureau of Guangzhou Municipal(202032797);Guangzhou Municipal Science and Technology Bureau(202102020594)作者简介:朱付祥(1997),男,硕士研究生,主要从事桥梁抗震研究。E-mail:通讯作者:易江(1990),男,讲师,博士,主要从事桥梁抗震研究。E-mail:第3期method is suggested to obtain the n
10、umerical solution,whose accuracy is verified by the finite element method.Thisstudy focuses on the resonant mechanism of modal vibration.The results show that under axial,vertical and axialand vertical excitation,there are many resonance regions of cable parametric vibration,including very small per
11、iods,periods near O.5Ti,T and 2Tr.In the resonance region,the cable vibration amplitude is quite large.Thecontribution of modal vibration to the total cable force is high,more than O.4,which can not be ignored in practicalengineering.Cable damping plays an important role in the modal vibration.Incre
12、asing the cable damping ratio willalter the amplitude and frequency characteristics of cable modal vibration,reduce the cable force and the contributioncoefficient of modal vibration,but the degree of reduction is greatly affected by the excitation amplitude.Key words:bridge engineering;parametric v
13、ibration;vibration equations;stay cables;in-plan support excitation;resonant period朱付祥,等:面内端部激励下斜拉索振动方程推导与求解1510引言拉索是高柔性构件,在自重和轴力作用下将产生垂度。在张拉时,拉索的伸长量包括弹性伸长以及克服垂度所带来的伸长,造成索拉力与伸长量的几何非线性,呈现显著的垂度效应。由于具有大柔度、小质量和小阻尼等特点,在外部激励下拉索将产生振动现象。根据激励类型的不同,拉索振动分为两类:第一类为受迫振动,指由直接作用在拉索上的荷载而引起的拉索振动,最典型的就是拉索的风致抖振、涡激共振等;第
14、二类为端部激励,如支撑于斜拉索两端的桥面主梁、桥塔的振动引起拉索的振动。发生第一类振动时,一般认为拉索的动力特性(如频率和等效刚度等)不发生变化,已形成较多的研究成果;发生第二类振动时,拉索的动力特性不断变化,相关研究较少,是拉索振动研究的难点。大量研究表明,端部激励导致拉索边界条件的变化,将引起拉索的拟静态振动和模态振动。前者是由于拉索端部位移引起的拉索拟静态响应,不考虑拉索惯性、拉索阻尼所产生的动力反应;后者为拉索非线性模态的振动2。受垂度效应的影响,拉索的拟静态索力与端部位移存在显著的非线性变化关系。为分析拉索拟静态反应,常用的方法如下:方法一:基于Enrst公式,采用等效模量法,每根拉
15、索由一个具有恒定等效索刚度的桁架单元代替。该方法假设拉索索力和轴向刚度变化不大,当索力波动较大时,误差较大。方法二:使用等参单元,如采用四个节点等参单元3考虑拉索的垂度效应。然而,在这种方法中,发现弯曲单元的矩阵比实际刚度大4,并且需要数值积分,可能导致数值发散和不稳定性。方法三:用两节点悬链线单元来模拟拉索,该单元使用拉格朗日公式精确地考虑缆索的弯曲几何形状5。采用悬链线单元可以得到精确的索结构分析结果,但每一步都需要迭代,这适用于静力响应计算,不适用于动力分析。上述三种方法具有一定的内在缺陷,方法一无法完全反映拉索的非线性拟静力反应,方法二和方法三难以直接应用于拉索的非线性动力分析。与此同
16、时,端部激励下拉索动力非线性效应亦非常显著,主要方法有:方法一:忽略拉索自重,将其视为张紧弦,考虑拉索局部伸长产生的非线性效应6。该方法忽视了垂度效应的影响,误差较大;方法二:采用叠加法分析将动边界下的索运动分解为拟静态振动和模态振动,基于预紧状态下拉索的自振频率和振型特征,采用Galerkin模态截断、摄动分析或有限差分法等方法,求解拉索多模态离散动力学方程1,7-12。该方法考虑拉索的参数振动,但假定拉索自振频率与振型特征不发生改变,在拉索振动幅度较大时存在一定的误差131;方法三:有限元法,将拉索分成几个小单元,从而考虑拉索的振动特性8,14。但这种模型自由度较多,大大增加计算成本和可能
17、产生计算不容易收敛问题,比如拉索节点的平衡条件不容易满足5。O由此可见,由于端部激励下拉索的动力反应非常复杂,现有计算方法均存在一定的缺陷。近年来,易江等15-16 改进了Enrst公式,采用微分方法推导了轴向激励下拉索非线性拟静态索力-端部位移公式,该公式可以很好地考虑索力变化对拉索轴向刚度的影响,相关成果已经应用于斜拉桥全桥动力反应分析。该公式精确描述了拉索非线性拟静态反应,为进一步分析端部激励下拉索的非线性动力反应提供了思路。本文抽152象端部激励下的拉索动力学描述模型,基于拉索索力、拉索应变、端部位移等协同变化关系,精确地推导出面内端部激励下拉索非线性拟静态反应和模态振动数学方程(组)
18、,采用有限差分法进行求解,并根据有限元计算结果进行验证。1拉索的拟静态反应地震工程与工程振动第43卷基本假定如下:材料处于弹性范围内;不考虑拉索的抗扭刚度、抗剪刚度;不考虑索轴向惯性力的影响,索力沿索长保持一致;小垂度拉索,索的几何变形可等效为二次抛物线;拉索阻尼很小,可以忽略不计。为简化分析,首先研究水平拉索。在成桥状态下,拉索的索力为T。,水平投影长度为L,拉索的弹性模量为E,截面面积为A,单位长度重量为q。此时,拉索的几何形状近似为二次抛物线,其几何方程Y。拉索总长度 s。分别为17;xx-(L+U,)Y。=-qdydxdx以下分别从三种工况来分析拉索的拟静态反应:轴向激励、竖向激励、轴
19、向和竖向共同激励作用。1.1轴向激励在轴向激励下,拉索拟静态索力T,是在不断变化的,拉索的形状保持为二次抛物线,如图1(a)所示,此时拉索的拟静态几何方程Y,、总长度s,分别为:Y,=-q(dy-L+U12(dx)0由于在张拉过程中,拉索材料保持为弹性,根据胡克定律,拉索的伸长量与索力变化关系,如式(3)所示:(3)L考虑到拉索U0.4m),拉索在激励周期0.5T,附近也产生了比较明显的模态共振,此时,索力亦迅速增加至40 0 0 kN以上,贡献系数超过0.4。此外,拉索模态振动对周期非常敏感,相同激励位移下较小的周期变化可能导致较大的模态振动索力变化,如激励周期在T,附近时,见图3。在竖向激
20、励下,模态振动的共振区域主要是在T,附近,另外,在0.5T,附近以及当激励周期特别小时(0.8 s),模态振动索力也较大。与轴向激励相比,竖向激励引起的拉索模态振动索力较小,一般不超过2000kN,模态振动贡献系数也不超过0.2;但在T,附近时,模态振动引起的索力较为显著,最大索力亦超过4000kN,贡献系数超过0.4,见图4。0.5T2T0.60.50.40.30.20.10.60.50.40.30.20.1Fig.4 Maximum cable force and contribution factor of modal vibration under vertical excitatio
21、ns在轴向和竖向共同激励下,拉索的模态共振区域包括小周期(0.4m),拉索从无阻尼状态到阻尼比为0.1时,模态振动贡献系数从0.5 0.6 降低至0.1 0.3之间。特别是在竖向激励下,增大阻尼比对拉索模态振动索力的控制效果非常显著,当阻尼比超过0.0 2 时,模态振动贡献系数不超过0.2。上述分析说明,增加阻尼比对控制拉索的模态振动以及拉索索力具有较好的效果。但需要注意到,在轴向及轴向和竖向激励下,模态振动贡献系数较大,可能超过0.2,模态振动对索力的影响不能忽视。100008000F6000F400020000.10.1Fig.6 Effect of damping ratio on th
22、e vibration of cable under axial excitations另一方面,从图6 可知,在轴向激励下,存在模态振动贡献系数突然大幅度增加的情况,如图6(b)中,当阻尼比为0.0 2 时,随着激励幅值从0.35m增加至0.4m,模态振动贡献系数从0.2 53大幅度增加至0.535;类似的现象也出现在图8 中。为说明这个问题,以轴向激励为例,图9 给出了拉索在位移幅值为0.4m时阻尼比对索力时程的影响曲线,其中,图9(a)给出了总索力时程和拟静态索力时程变化情况,图9(b)给出了模态振动索力的变化情况。可以看到,在端部激励初期,阻尼比对索力振动特性的影响较小,拉索总索力接近
23、于接近拟静态振动结果,此时模态振动索力较小;随着激励时间的增加,模态振动索力大幅度增加,此时阻尼比不仅改变索力振动幅值,也改变了拉索振动的频率,导致拉索模态振动的特征发生较大的改变。如对比和的两种情况,模态振动索力幅值出现的时间有较大的差别,这将改变端部激励输入模态振动的能量2 0,引起模态振动索力较大的变化(模态振动索力最大值从=0.0 2 时的452 5kN降低至=0.10 的7 51kN)。地震工程与工程振动0.5T2T0.60.50.40.30.20.1Fig.5 Maximum cable force and contribution factor of modal vibratio
24、n under axial-vertical excitations0.5激励幅值/m激励幅值/m(a)拉索最大索力(b)模态振动贡献系数图6 轴向激励下阻尼比对拉索振动的影响第43卷0.5T2T0.6T./kN0.55000/40000.43000200010000123456激励周期/s(a)模态振动最大索力图5轴向和竖向激励下模态振动最大索力及贡献系数-5=00050.6=0.01=0.02=0.040.4H=0=0.001=0005=0.01=0.02=0.045=0.07=0.10?拟静态索力0.20.3p0.500.400.300.30.200.100.20.000.112激励周期
25、/s(b)模态振动贡献系数0.85-0一=0.001=0.10?-J0.2530.2F0.00.40.53456=0.070.5350.60.00.10.20.30.40.6第3期10000800060004000200000.010000800060004000200000.010000-0=0.108000NV/60004000200005结论朱付祥,等:面内端部激励下斜拉索振动方程推导与求解一5=0=0.001=0005=0.01-=0.02+=0.04-=0.07=0.10?一拟静态索力X*文0.10.2激励幅值/m(a)拉索最大索力图7 竖向激励下阻尼比对拉索振动的影响Fig.7 E
26、ffect of damping ratio on the vibration of cable under vertical excitations-0=0.07=0.001=0.10=00050.65=0.01=0.025=0.040.45-05=0.0013=00053=0.01$=0.02=0.04=0.073=0.10?拟静态索力0.10.2激励幅值/m(a)拉索最大索力图8轴向和竖向激励下阻尼比对拉索振动的影响Fig.8Effect of damping ratio on the vibration of cable under axial-vertical excitations
27、5=0.005拟静态索力十41590.63-03=0.001=0.100.5-=00055=0.010.4=0.025=0.040.30.20.10.00.30.40.30.4-0.02812时间s(a)拉索总索力图9阻尼比对索力时程的影响Fig.9 Effect of damping ratio on cable force histories一=0.0 70.50.60.50.616200.00.80.20.00.06000F4500FNV学30001500H-150050.1(b)模态振动贡献系数10.10.2激励幅值/m(b)模态振动贡献系数-=02=0.005=0.1048(b)模态
28、振动索力0.2激励幅值/m0.30.45=0.021216时间/s0.30.40.50.50.60.620本文推导了面内端部激励下拉索拟静态振动和模态振动控制方程,并给出了数值求解方法,得到如下的结论:1)数值分析结果与有限元分析结果吻合较好,证明了本文得到的拟静态振动和模态振动控制方程的正确性,亦验证了给出的数值方法求解拉索振动的有效性;2)在端部激励下,拉索的模态振动随激励位移而大幅度增加,在端部激励位移较大时,其对拉索最大索力的贡献超过0.4,在实际工程不容忽视;3)拉索模态振动存在一些特殊的共振区间,在共振区域内,拉索振动索力幅度较大,模态振动贡献系数160较高,这些共振区域分别在小周
29、期区域、0.5T、T,和2 T,等。4)增加拉索的阻尼可以大幅度降低拉索的模态振动索力及其贡献系数,但降低幅度与激励幅度有关,且可能改变拉索模态振动的幅频特征。参考文献:1WARNITCHAI P,FUJINO Y,SUSUMPOW T.A non-linear dynamic model for cables and its application to a cable-structure systemJJ.Journalof Sound and Vibration,1995,187(4):695-712.2WANG L H,ZHAO Y Y.Large amplitude motion m
30、echanism and non-planar vibration character of stay cables subject to the support motionsJ.Journal of Sound and Vibration,2009,327(1/2):121-133.3ALI H M,ABDEL-GHAFFAR A M.Modeling the nonlinear seismic behavior of cable-stayed bridges with passive control bearingsJJ.Computers&Structures,1995,54(3):4
31、61-492.4LEONARD J W.Tension structures:Behavior and analysis M.New York.N Y United States:John Wiley&Sons Ltd,1988:235-298.5KAROUMI R.Some modeling aspects in the nonlinear finite element analysis of cable supported bridgesJJ.Computers&Structures,1999,71(4):397-412.6TAGATA G.Harmonically forced,fini
32、te amplitude vibration of a stringJJ.Journal of Sound and Vibration,1977,51(4):483-492.7SUN C S,ZHOU X K,ZHOU S X.Nonlinear responses of suspended cable under phase-differed multiple support excitationsJJ.NonlinearDynamics,2021,104(2):1097-1116.8DEMSI C M,UROS M,JAGULJNJAK LAZAREVI C A,et al.Resonan
33、ce regions due to interaction of forced and parametric vibration of a paraboliccable J.Journal of Sound and Vibration,2019,447:78-104.9AKKAYA T,VAN HORSSEN W T.On boundary damping to reduce the rain-wind oscillations of an inclined cable with small bending stiffnessJJ.Nonlinear Dynamics,2019,95(1):7
34、83-808.10BENEDETTINI F,REGA G,ALAGGIO R.Non-linear oscillations of a four-degree-of-freedom model of a suspended cable under multiple internalresonance conditions J.Journal of Sound and Vibration,1995,182(5):775-798.11 雷大根,郑久建,刘晓丰,等。端部激励下斜拉索三维振动统一方程的精细推导J.中国公路学报,2 0 19,32(8):92-10 0,113.LEI Dagen,ZH
35、ENG Jiujian,LIU Xiaofeng,et al.Fine derivation of the unified equation for three-dimensional vibration of stayed cable under endexcitationJ.China Journal of Highway and Transport,2019,32(8):92-100,113.(in Chinese)12王波,徐丰,张海龙.端部激励下空间倾斜拉索非线性振动特性研究J.振动与冲击,2 0 0 9,2 8(5):17 2-17 5.WANG Bo,XU Feng,ZHANG
36、Hailong.Non-linear vibration characteristics of spatial incalined cables under periodic support excitationJJ.Journal of Vibration and Shock,2009,28(5):172-175.(in Chinese)13 GUO T D,KANG H J,WANG L H,et al.A boundary modulation formulation for cables non-planar coupled dynamics under out-of-planesup
37、port motionJJ.Archive of Applied Mechanics,2016,86(4):729-741.14 ABDEL-GHAFFAR A M,KHALIFA M A.Importance of cable vibration in dynamics of cable-stayed bridgesJJ.Journal of Engineering Mechanics,1991,117(11):2571-2589.15 易江,莫金生,李建中.强震作用下独塔斜拉桥拉索松弛现象研究J.工程力学,2 0 18,35(6):97-10 4,114.YI Jiang,MO Jinsh
38、eng,LI Jianzhong.Study on cable relaxation of signle-tower cable-stayed bridge due to strong earthquakesJ.EngineeringMechanics,2018,35(6):97-104,114.(in Chinese)16YI J,LI JZ.Modelling of stay cables with large earthquake-induced force variations in cable-stayed bridgesJJ.Structures,2021,33:627-636.1
39、7GIMSING N J,GEORGAKIS C T.Cable supported bridges:Concept and design MJ.London,United Kingdom:John Wiley&Sons Ltd,2012:266-286.18 GONZALEZ-BUELGA A,NEILD S A,WAGG D J,et al.Modal stability of inclined cables subjected to vertical support excitationJJ.Journalof Sound and Vibration,2008,318(3):565-57
40、9.19WARMINSKI J,ZULLI D,REGA G,et al.Revisited modelling and multimodal nonlinear oscillations of a sagged cable under support motionJ.Meccanica,2016,51(11):2541-2575.20 谢子洋,李遇春,吴南方.斜拉索参数振动稳定性能量分析及实验验证C】/第2 6 届全国结构工程学术会议论文集(第册).长沙:中国力学学会,2 0 17:56 3-56 7XI Ziyang,LIYuyan,WU Nanfang.Parametric vibration stability energy analysis and experimental verification of diagonal cables CJ/Proceedingsof the 26th National Academic Conference on Structural Engineering(Vol.II).Changsha:Chinese Society of Mechanics,2017:563-567.(inChinese)地震工程与工程振动第43卷