收藏 分销(赏)

基于多方法融合的低产低效气井优选.pdf

上传人:自信****多点 文档编号:388843 上传时间:2023-09-13 格式:PDF 页数:7 大小:2.02MB
下载 相关 举报
基于多方法融合的低产低效气井优选.pdf_第1页
第1页 / 共7页
基于多方法融合的低产低效气井优选.pdf_第2页
第2页 / 共7页
基于多方法融合的低产低效气井优选.pdf_第3页
第3页 / 共7页
亲,该文档总共7页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述

1、第 59 卷第 3 期2023 年 5 月地质与勘探GEOLOGY AND EXPLORATIONVol.59No.3May,2023基于多方法融合的低产低效气井优选董凤娟1,2,孙泽庸1,2,高占武3,孙振4,黄海1,2,陈悦1,2,卢学飞5(1.西安石油大学石油工程学院,陕西西安710065;2.陕西省油气田特种增产技术重点实验室,陕西西安710065;3.长庆油田分公司,陕西西安710018;4.长庆油田分公司第六采气厂,陕西延安716000;5.西安石油大学理学院,陕西西安710065)摘要 随着致密气田的深入开发,低产低效井逐年增加,已经成为制约气田开发的关键问题之一。以苏里格气田某

2、区块30口气井为研究对象,引入产量贡献率作为动态分类指标,运用气井产量贡献率累计分布曲线的类分割点将气井划分为4类。以纵向合采砂体数、有效砂体厚度、孔隙度、渗透率和含气饱和度等参数作为静态评价指标,采用熵权-理想点法,对气井进行静态分类。基于动态和静态分类结果,引入自相关距离判断异常值点,进行低产低效气井优选。研究表明,I、II、III、IV类气井的储层质量依次变差,累计产量依次减小;4口气井为低产低效井,优选结果符合生产实际。该研究成果可为气田进一步挖潜的选井、选层提供一种新的技术途径。关键词气井分类产量贡献率熵权-理想点法自相关距离低产低效气井苏里格气田中图分类号TE122.2文献标识码A

3、文章编号0495-5331(2003)03-0657-7Dong Fengjuan,Sun Zeyong,Gao Zhanwu,Sun Zhen,Huang Hai,Chen Yue,Lu Xuefei.Optimization of low-production and low-efficiency gas wells based on multi-method fusionJ.Geology and Exploration,2023,59(3):0657-0663.0引言近年来,经济发展带动了对油气消费的需求,也推动了油气勘探开发技术的提升和理论创新,进而扩展了非常规油气勘探开发领域。鄂尔

4、多斯、塔里木、四川等盆地蕴含着丰富的致密气资源,目前处于快速发展阶段,勘探开发潜力巨大(程立华等,2020;白洋等,2021;郑和荣等,2021)。但致密气藏一般具有分布广、纵向上多层砂体叠加、储层非均质性强、丰度低、单井控制储量小等特点,导致实际开发难度大(吴育平等,2019;贾焰然等,2021)。目前,不少学者引入新技术或方法理论来研究气井分类及产能评价,并取得了一定成果。例如,将地震频谱衰减特征、岩性特征与单井产量相结合,对气井进行综合评价(赵一民等,2009;陈芳芳等,2019);选取渗透率、相渗曲线特征点参数,结合相渗曲线特征建立气井分类方案(位云生等,2013;罗顺社等,2015;

5、胡小虎,2021);基于气井生产动态数据和地质参数,采用灰关联分析法(周俊杰等,2011;武男等,2018;李帅等,2019)、模糊数学方法(闫健等,2008;周志军等,2013)对气井进行综合评价。但是,不同气田的开发工艺、地质/生产数据管理模式存在一定的差异,导致气井的分类方法亦存在差异。本次以苏里格气田某区块为研究对象,综合考虑气井静态、动态特征,多种方法融合进行低产低效井优选,为气田进一步挖潜的选井、选层提供一种新的思路与方法。1气井分类综合评价方法目前,气井分类常用的方法主要包括:试气无收稿日期2021-11-30;改回日期2023-03-05;责任编辑郝情情。基金项目国家自然科学基

6、金项目(编号:41802166、51874240)、陕西省重点研发计划(编号:2020KW-027)和陕西省自然科学基础研究计划项目(2022JM-166)联合资助。第一作者董凤娟(1980年-),女,2010年毕业于西北大学,油气田地质与开发专业,获博士学位,副教授,主要从事油气田地质与开发方面研究。E-mail:dfj_。董凤娟doi:10.12134/j.dzykt.2023.03.016657地质与勘探2023 年阻流量法、储层参数法、单位套压降采气量法和日产气量法等(李士伦等,2004;赵靖舟等,2007;成志刚等,2012;黄耕等,2021)。但是,这些方法均存在一定的局限性。例如

7、,储层参数法聚焦于气井静态地质特征,以地质参数为依据进行气井评价,无法反映气井的动态生产特征;试气无阻流量法无法准确反映气井实际产能;日产气量法则忽略了生产时间对气井产能的影响;气井单位压降采气量法则不能如实反映非连续生产的气井的实际产能(颜泽江等,2015)。因此,针对上述气井分类方法存在的局限性,本次研究引入累计产量贡献率作为动态分类指标,运用气井产量贡献率累计分布曲线的类分割点进行气井动态分类。1.1气井动态分类气井动态分类动态分类方法是指利用生产动态资料对气井进行分类,实际生产过程中常以气井的累计产量或经济效益作为划分气井分类评价标准的依据。本次研究引入累计产量贡献率作为气井动态分类指

8、标,运用气井产量贡献率累计分布曲线的类分割点将气井划分为4类。(1)求取产量贡献率产量贡献率是指在某一时间内,区块内单口气井累计产量占整个区块所有气井累计产量的百分比(谭玉涵等,2015)。i=QiQt 100%(1)式(1)中i为第i口气井的产量贡献率;Qi为第i口气井的累计产量;Qt为区内所有气井累计产量。(2)绘制产量分布曲线以苏里格气田某区块30口气井为研究对象,并将其以单井产量从大到小进行排序编号(1,2,3,30),绘制气井产量贡献率累计分布曲线,见图1。从图1可以看出,气井产量贡献率累计分布曲线不光滑,即各气井的产量贡献率不均匀。(3)求类分割点数学问题中曲线的拐点是指改变曲线方

9、向的点,也就是说,拐点是曲线斜率大幅度变化的点(黎菁等,2013)。当第i口气井的产量贡献率发生明显变化时,产量分布曲线出现一个明显的拐点,将其称为类分割点。设P=P1()x1,y1,P2()x2,y2,P30()x30,y30构成气井产量贡献率累计分布曲线的点集,并且其中一点可表示为P()i=Pi()xi,yi(1 i 30);求取任意两个连续点构成的直线的斜率ki(i=1,2,29),即气井产量累计贡献率的变化率。对于气井产量累计贡献率曲线类分割点的确定,应寻求合理的方法,有效、细致确定出潜在的多个拐点。考虑到气井产量及其贡献率的差异性,引入气井产量累计贡献率曲线任意两个连续点“斜率变化率

10、”,来确定气井产量累计贡献率曲线的类分割点(图2),从而进行气井动态分类。(4)气井动态分类结果图1苏里格气田某区块气井产量贡献率累计分布曲线Fig.1Cumulative distribution curve of contribution rate of gas well production in a block of the Sulige gas field658董凤娟等:基于多方法融合的低产低效气井优选第 3 期通过以上步骤计算分析发现,气井产量累计贡献率曲线存在3个类分割点,对应的累计产量贡献率分别为50.0%、75.0%和96.0%。根据气井产量贡献率累计分布曲线的3个类分割点将

11、该区块30口气井划分为4类(图1),即类(高产井)、类(中产井)、类(低产井)和类(特低产井)。从图1可以看出,I类气井有3口,占10.0%,单井累计产量为 3304.011519.0 万方;II 类气井有 7口,占 23.30%,单井累计产量为 1279.01398.0 万方;III类气井有11口,占36.67%,单井累计产量为426.01144.0万方;IV类气井有9口,占30.0%,单井累计产量为19.0350.0万方。图2连续两点斜率分布曲线Fig.2Slope distribution curves of two consecutive points1.2气井静态分类气井静态分类静态

12、分类方法是指从静态地质特征出发,利用气井的地层参数对其进行分类。开发实践证明,苏里格气田某区块气井的静态地质特征(纵向上合采砂体数、有效砂体厚度、孔隙度、渗透率、含气饱和度)差异较大。同时,纵向上合采砂体数可以反映气井开采过程中的层间干扰情况;有效砂体厚度、孔隙度、含气饱和度和渗透率决定储层的储集性与工业产气能力(李思涵等,2020;刘江斌等,2021)。因此,本次研究选取单井的纵向上合采砂体数、有效砂体厚度、孔隙度、渗透率、含气饱和度等5个参数作为静态判别集合,采用熵权-理想点法建立气井静态分类预测模型,将研究区30口气井分为I、II、III、IV类。熵权-理想点法(表1)是在确定合理的评价

13、指标体系的基础上,采用熵权分析法求取各指标的相对权重,然后找到一个尽量接近理想点的点,最终通过理想点贴近度来评价对象的状态,从而确定其所属类别(王迎超等,2010;赵博等,2020)。表1苏里格气田某区块气井动态与静态分类结果Table 1Dynamic and static classification of gas wells in a block of the Sulige gas field123456782232324412.08.6016.7014.7016.1012.3012.4012.6011.248.4810.768.1311.4811.808.0512.161.090.47

14、0.830.221.141.360.270.3864.0867.6463.4462.9562.5065.6257.8863.8629.8939.8748.4452.0755.6959.2962.7766.22IIIIIIIIIIIII0.910.630.830.620.890.950.440.55IIIIIIIIIIIIIIVIII序号纵向合采砂体数(个)有效砂体厚度(m)孔隙度(%)渗透率(10-3m2)含气饱和度(%)累计产量贡献率(%)动态分类贴近度静态分类659地质与勘探2023 年9101112131415161718192021222324252627282930322523543

15、333334233332213.6011.5011.4013.307.7011.2014.1013.3014.909.608.7015.708.109.014.506.4010.2014.8011.708.808.108.709.2512.3311.659.7111.228.839.1010.6411.1110.5810.1111.6410.407.978.378.8910.109.7010.757.537.247.840.591.271.290.520.600.510.311.300.390.360.601.190.320.440.440.240.700.610.730.400.330.31

16、61.2376.7165.3758.1373.9559.1863.4962.7961.1265.1159.061.6563.0659.5054.1962.3165.2352.7262.1461.7850.7440.9969.5772.8975.8678.7481.4484.0686.5488.8591.0192.3493.4994.6295.7396.6497.4398.0798.6399.1199.4799.7199.9299.97IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIVIVIVIVIVIVIVIVIV0.720.940.930.520.720.640.45

17、0.830.660.540.670.900.470.540.570.430.740.730.770.510.450.43IIIIIIVIIIIIIIVIIIIIIIIIIIIIIVIIIIIIIVIIIIIIIVIVIV序号纵向合采砂体数(个)有效砂体厚度(m)孔隙度(%)渗透率(10-3m2)含气饱和度(%)累计产量贡献率(%)动态分类贴近度静态分类以研究区30口气井的纵向上合采砂体数、有效砂体厚度、孔隙度、渗透率、含气饱和度作为训练样本数据集(表1),根据建立的熵权-理想点法气井静态分类预测模型进行计算分析(刘志祥等,2017;陈学贤等,2018),通过理想点贴近度来对气井进行静态评价,确

18、定其所属类别。分析不同类型气井的贴近度分布规律发现,贴近度C+i0.93 为类气井,0.75C+i0.93为类气井、0.55C+i0.75为类气井、C+i0.55为类气井。2低产低效气井优选低产低效井是指单井累积产量很低的井,从经济效益角度考虑,是指近阶段生产没有经济效益或经济效益低的井。首先,基于上述气井动、静态分类结果,构成 2个数据序列,即动态分类结果序列(xi,yi)和静态分类结果序列(xj,yj)。然后,引入自相关距离(dij)(聂志红等,2019;孟建宇等,2020),设当空间两点间的距离大于自相关距离的众数值时,可判定其为异常值点,进一步筛选出低产低效气井。自相关距离计算公式为:

19、dij=()xi-xj2+()yi-yj2(2)其中,对于同一口气井xi=xj;yi、yj分别为动、静态分类结果;i或j=1,2,30。对上述动、静分类结果进行对比分析发现,同一口井的动、静态分类结果存在一定差异,其自相关距离(dij)分布在(0,2)之间,其众数为1。同时,气田开发实践表明,大多数气井的动、静态特征是相匹配的。因此,设自相关距离(dij)大于 1 的点,即动、静分类结果的差值超过区间(-1,1)的点属于异常点(图3),共有6个异常点。在图3中,号和号异常点所对应的气井分别为:2号气井和 7号气井,其静态评价结果分别为III、IV类储层,而其动态分类属于I类高产井、II类中产井

20、。因此,认为这2口井不属于低产低效井。阴影区域的号异常点所对应的气井分别为:11号气井、25号气井、26号气井和27号气井,其静态评价结果分别为I类、II类储层,而其动态评价结果分别为III类低产井、IV类特低产井。因此,认为这4口井属于低产低效井。同时,分析动、静态分类结果差值的分布频率特征发现,其分布特征符合正态分布(图4)。续表1Continued Table 1660董凤娟等:基于多方法融合的低产低效气井优选第 3 期图3气井动、静态分类结果对比Fig.3Comparisonofdynamicandstaticclassificationresultsofgaswells图4动、静态分

21、类差值分布频率Fig.4Dynamic and static classification of differencedistribution frequency3结论与建议本文提出的多方法融合的低产低效气井优选方法既能充分、客观地将动态、静态分类结果有机融合,又可进一步提低产低效井优选的可信度。(1)以苏里格气田某区块 30 口气井为研究对象,引入产量贡献率作为动态分类指标、产量曲线的类分割点将气井划分为4类,即I类高产井、II类中产井、III类低产井、IV类特低产井。其中,I类气井3口,占10.0%;II类气井7口,占23.30%;III类气井11口,占36.67%;IV类气井9口,占30

22、.0%。(2)从静态地质角度出发,既考虑储层的储集能力与产气能力,又考虑气井开采过程中的层间干扰情况,选取纵向上合采砂体数、有效砂体厚度、孔隙度、渗透率、含气饱和度等5个评价参数,采用熵权-理想点法建立气井静态分类预测模型,将气井分为4类。I、II、III、IV类气井的储层质量依次变差。(3)基于气井动态、静态分类结果构成的2个数据序列,引入自相关距离判断异常值点,最终确定4口井为低产低效井。低产低效井优选结果符合生产实际,为气田进一步挖潜的选井、选层提供了一种新的技术途径。ReferencesBai Yang,Tan Maojin,Xiao Chengwen,Han Chuang,Wu Ho

23、ngliang,LuoWeiping,Xu Binsen.2021.Dynamic classification committee machine-based fluid typing method from wireline logs for tight sandstone gasreservoir J.Chinese Journal of Geophysics,64(5):1745-1758(inChinese with English abstract).Chen Fangfang,Jiang Yue,Liu Jingun,Li Chengcheng,Feng Jun,TanZhiwe

24、i.2019.Application of characteristics of seismic frequencyspectrum attenuation in classification and evaluation of gas wellsin basement gas reservoirs:A case of Dongping basement gasreservoir J.Xinjiang Petroleum Geology,40(5):600-604(inChinese with English abstract).Chen Xuexian,Liu Shihui,Zhang Mi

25、ng.2018.Optimization of railwayroute scheme based on entropy weight ideal point methodJ.Railway Standard Design,62(2):29-33(in Chinese).Cheng Lihua,Guo Zhi,Meng Dewei,Ji Guang,Wang Guoting,ChengMinghua,Zhao Xin.2020.Reserves grading classification anddevelopmentcountermeasuresforlow-permeabilitytigh

26、tgasreservoirs in the Ordos BasinJ.Natural Gas Industry,40(3):65-73(in Chinese with English abstract).Cheng Zhigang,Song Ziqi,Jing Cheng,He Yufei,Duan Qiong,Li Miao,Pang Yudong,Tian Xin.2012.Classfication and characteristics ofreservoir diagenetic facies for tight gas reservoir in eastern area ofSul

27、igeJ.Fault-Block Oil and Gas Field,19(5):577-582(inChinese with English abstract).Hu Xiaohu.2021.Transient productivity evaluation method for shale gasuneven-fractured horizontal wellJ.Fault-Block Oil and GasField,28(4):519-524(in Chinese with English abstract).Huang Geng,Huang Xiaohu,Yi Wu,Zhou Yin

28、g.2021.Analysis oflandslide rainfall threshold based on improved slope thresholdmethodJ.Journal of China Three Gorges University(NaturalSciences),43(4):31-36(in Chinese with English abstract).Jia Yanran,Shi Juntai,Li Xinghao,Chen Hongfei,Fang Jinhui,JiaoTingkui,Zhang Hong,WangYe.2021.Classification

29、and evaluationmethods for low-permeability tight gas wells in the Zizhou gasfield of Changqing J.Geology and Exploration,57(3):647-655(in Chinese with English abstract).Li Qing,Luo Bin,Zhang Xunyang,Hou Wenfeng,Yue Xiaojun.2013.Methods to determine the lower limits and controlling factors of theeffe

30、ctive reservoir of tight sand gas reservoirsJ.Journal ofSouthwestPetroleumUniversity(ScienceandTechnologyEdition),35(2):54-62(in Chinese with English abstract).Li Shilun,Sun Lei,Du Jianfen,Tang Yong,Zhou Shouxin,Guo Ping,LiuJianyi.2004.Difficulties and measures for development of lowpermeability tig

31、ht gas reservoirs and condensate gas reservoirs J.Xinjiang Petroleum Geology,(2):156-159(in Chinese with Englishabstract).Li Shuai,Chen Junbin,Cao Yi,Nie Xiangrong,Li Yu,Liu Jing.2019.Study on the influence factors of shale reservoir brittleness based661地质与勘探2023 年on grey correlation analysis J.Chin

32、a Mining Magazine,28(2):169-174,180(in Chinese with English abstract).Li Sihan,Wang Changquan,Wu Hua,Liu Tao,Zhao Xu.2020.Normalization method of capillary pressure curve based oneffective thickness of reservoirJ.China Sciencepaper,15(5):593-598(in Chinese with English abstract).Liu Jiangbin,Wu Xiao

33、bin,Cui Hongjun,Gao Qiyu,Lei Kaiyu.2021.Analysisoninfluencingfactorsofreservoirmovablefluidoccurrence in Shan 2 member of Shanxi Formation,Yan an area,Ordos Basin J.Geology and Exploration,57(1):231-240(inChinese with English abstract).Liu Zhixiang,Liu Qiang,Xiao Siyou,Lan Ming,Wang Weihua.2017.Mini

34、ng method optimization and stope stability study based onentropy weight and ideal pointJ.Mining and MetallurgyEngineering,37(3):1-5,10(in Chinese).Luo Shunshe,Peng Yuhui,Wei Xinshan,Zheng Ailing,Shao Yan,WeiWei,LvQiqi.2015.Gas-waterpermeabilitycurvecharacteristics and classification of tight sandsto

35、ne in Sulige gasfieldJ.Journal of Xi an Shiyou University(Natural ScienceEdition),30(6):55-61,9(in Chinese with English abstract).Meng Jianyu,Qin Yongjun,Xie Liangfu,Yu Guangming.2020.Studyon surface settlement trough curve of shield tunnel based onrandom field theory J.Geology and Exploration,56(3)

36、:597-604(in Chinese with English abstract).Nie Zhihong,Kan Changzhuang,Xie Yang.2019.Identification andprocessing method of single outlier of continuous compactionquality measured valueJ.Journal of Harbin Institute ofTechnology,51(3):150-157(in Chinese with English abstract).Shen Jian,Zhang Chunjie,

37、Qin Yong,Zhang Bing.2017.Influencingfactors and parameter thresholds of co-production of coal-measure sandstone gas and coalbed methane in Linxing area,Ordos BasinJ.Natural Gas Geoscience,28(3):479-487(inChinese with English abstract).Tan Yuhan,Guo Jingzhe,Zheng Feng,Xu Weifeng.2015.Seepagecharacter

38、istics and physical simulation of replacement productionof multi-layer co-production in gas well J.Oil&Gas Geology,36(6):1009-1015(in Chinese with English abstract).Wang Yingchao,Shang Yuequan,Sun Hongyue,Yan Xibing.2010.Researchand application of rockburst intensity prediction model based onentropy

39、 coefficient and ideal point method J.Journal of China CoalSociety,35(2):218-221(in Chinese with English abstract).Wei Yunsheng,Jia Ailin,He Dongbo,Liu Yueping,Ji Guang,Cui Bangying,Ren Lixia.2013.Classification and evaluation of horizontal wellperformance in Sulige tight gas reservoirs,Ordos Basin

40、J.NaturalGas Industry,33(7):47-51(in Chinese with English abstract).Wu Nan,Chen Dong,Sun Bin,Nie Zhihong,Liu Ying,Yan Xia.2018.Evaluation on fracturing effect based on classification method J.Journal of China Coal Society,43(6):1694-1700(in Chinese withEnglish abstract).Wu Yuping,Sun Wei,Du Kun,Li P

41、an,Qu Yiqian.2019.Effect of pore throatstructure differences on the occurrence characteristics of movablefluid in tight sandstone reservoirs:A case study of He8 reservoirs inthe eastern and western Sulige gas fields J.Geology and Exploration,55(1):212-222(in Chinese with English abstract).YanJian,Zh

42、angNingsheng,LiuXiaojuan.2008.Reasonableclassification and production allocation of low permeability gaswells in Sulige J.Drilling and Production Technology,(5):59-61,16(in Chinese with English abstract).Yan Zejiang,Qi Tao,Zhou Nan,Liao Wei,Du Guo,ZhangGangqing.2015.Gas production method with unit p

43、ressure dropand its application in gas field development J.XinjiangPetroleum Geology,36(3):330-333(in Chinese with Englishabstract).ZhaoBo,ZhaoYuqiong,WangJiamin,RenZhendong,DuJingfang.2020.Goaf slope risk evaluation model based on improvedTOPSIS method J.Journal of Natural Disasters,29(6):164-171(i

44、n Chinese with English abstract).Zhao Jingzhou,Wu Shaobo,Wu Fuli.2007.The classification andevaluation criterion of low permeability reservoir:An example fromOrdos BasinJ.Lithological Reservoirs,(3):28-31,53(inChinese with English abstract).Zhao Yimin,Tang Dazhen,Bian Shutao.2009.Application of seis

45、micspectrum attenuation property in deep volcanic gas reservoirprediction in southern Songliao Basin J.Petroleum Geology andRecovery Efficiency,16(2):46-48,54,114(in Chinese).Zheng Herong,Liu Zhongqun,Xu Shilin,Liu Zhenfeng,Liu Junlong,Huang Zhiwen,Huang Yanqing,Shi Zhiliang,Wu Qingzhao,FanLingxiao,

46、Gao Jinhui.2021.Progress and key research directions oftight gas exploration and development in Xujiahe Formation,Sinopec exploration areas,Siuchuan BasinJ.Oil and GasGeology,42(4):765-783(in Chinese with English abstract).Zhou Junjie,Li Yingchuan,Zhong Haiquan.2011.Classification andevaluation of w

47、ater-producing gas wells in low permeability gasreservoirs based on grey correlation analysis J.Journal of Oil andGas Technology,33(11):143-145,160,10(in Chinese).Zhou Zhijun,Yu Shaohua,Huang Zeming,Xue Jianglong,Zhao Qingbo,Zhao Libin.2013.Optimizing potential condition of Weixing oil fieldlow well

48、 with the Method of fuzzy comprehensive evaluationJ.Mathematics in Practice and Theory,43(8):110-115(in Chinese withEnglish abstract).附中文参考文献白洋,谭茂金,肖承文,韩闯,武宏亮,罗伟平,徐彬森.2021.致密砂岩气藏动态分类委员会机器测井流体识别方法 J.地球物理学报,64(5):1745-1758.陈芳芳,姜越,刘金滚,李程程,冯君,谈志伟.2019.地震频谱衰减特征在基岩气藏气井分类评价中的应用-以东坪基岩气藏为例 J.新疆石油地质,40(5):600

49、-604.陈学贤,柳世辉,张明.2018.基于熵权理想点法的铁路线路方案优选研究 J.铁道标准设计,62(2):29-33.成志刚,宋子齐,景成,何羽飞,段琼,李淼,庞玉东,田新.2012.苏里格东区致密气储层成岩储集相分类及特征 J.断块油气田,19(5):577-582.程立华,郭智,孟德伟,冀光,王国亭,程敏华,赵昕.2020.鄂尔多斯盆地662董凤娟等:基于多方法融合的低产低效气井优选第 3 期低渗透-致密气藏储量分类及开发对策 J.天然气工业,40(3):65-73.胡小虎.2021.页岩气非均匀压裂水平井非稳态产能评价方法 J.断块油气田,28(4):519-524.黄耕,黄晓虎,

50、易武,周迎.2021.基于改进型斜率阈值法的滑坡降雨阈值分析 J.三峡大学学报(自然科学版),43(4):31-36.贾焰然,石军太,李星浩,陈飞红,方锦辉,焦延奎,张洪,王烨.2021.低渗致密气井分类评价方法研究-以长庆子洲气田为例 J.地质与勘探,57(3):647-655.黎菁,罗彬,张旭阳,侯文锋,岳晓军.2013.致密砂岩气藏储层物性下限及控制因素分析 J.西南石油大学学报(自然科学版),35(2):54-62.李帅,陈军斌,曹毅,聂向荣,李育,刘京.2019.基于灰色关联分析法的页岩储层脆性影响因素研究 J.中国矿业,28(2):169-174,180.李士伦,孙雷,杜建芬,汤勇

展开阅读全文
部分上传会员的收益排行 01、路***(¥15400+),02、曲****(¥15300+),
03、wei****016(¥13200+),04、大***流(¥12600+),
05、Fis****915(¥4200+),06、h****i(¥4100+),
07、Q**(¥3400+),08、自******点(¥2400+),
09、h*****x(¥1400+),10、c****e(¥1100+),
11、be*****ha(¥800+),12、13********8(¥800+)。
相似文档                                   自信AI助手自信AI助手
百度文库年卡

猜你喜欢                                   自信AI导航自信AI导航
搜索标签

当前位置:首页 > 学术论文 > 论文指导/设计

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2024 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服