1、位似教学设计精品文档九年级数学下册位似教学设计【教学目标】:(一)知识与技能1进一步理解图形的位似概念,掌握位似图形的性质。2会利用作位似图形的方法把一个图形进行放大或缩小。3掌握直角坐标系中图形的位似变化与对应点坐标变化的规律。(二)过程与方法1、经历位似图形性质的探索过程,进一步发展学生的探究、交流能力、以及动手、动脑、手脑和谐一致的习惯。2、利用图形的位似解决一些简单的实际问题,并在此过程中培养学生的数学应用意识,进一步培养学生动手操作的良好习惯。(三)情感态度与价值观通过动手操作、探究与交流,发展学生的合情推理能力和初步的逻辑推理能力。【教学重点和难点】:本节教学的重点是图形的位似概念
2、、位似图形的性质及利用位似把一个图形放大或缩小。【教学过程】: 一、创设情景,构建新知 1位似图形的概念下列两幅图有什么共同特点? 如果两个图形不仅形状相同,而且每组对应点所在的直线都经过同一点,那么这样的两个图形叫做位似图形, 这个点叫做位似中心.2、引导学生观察位似图形下列图形中,每个图中的四边形ABCD和四边形ABCD都是相似图形.分别观察这五个图,你发现每个图中的两个四边形各对应点的连线有什么特征? 显然,位似图形是相似图形的特殊情形,其相似比又叫做它们的位似比. (1)五边形ABCDE与五边形ABCDE; (2)在平行四边形ABCD中,ABO与CDO(3)正方形ABCD与正方形ABC
3、D.(4)等边三角形ABC与等边三角形ABC(5)反比例函数y(x0)的图像与y(x0)的图像(6)曲边三角形ABC与曲边三角形ABC (7)扇形ABC与扇形ABC,(B、A 、B在一条直线上,C、A 、C在一条直线上) (8)ABC与ADE(DEBC; AEDB)2如图P,E,F分别是AC,AB,AD的中点,四边形AEPF与四边形ABCD是位似图形吗?如果是位似图形,说出位似中心和位似比. 二、适当提高,应用新知 1、位似图形的性质 一般地,位似图形有以下性质: 位似图形上任意一对对应点到位似中心的距离之比等于位似比. 2、作位似图形 例:如图,请以坐标原点O为位似中心,作的位似图形,并把的
4、边长放大3倍. 分析:根据位似图形上任意一对对应点到位似中心的距离之比等于位似比,我们只要连结位似中心O和的各顶点,并把线段延长(或反向延长)到原来的3倍,就得到所求作图形的各个顶点 3、直角坐标系中图形的位似变化与对应点坐标变化的规律 想一想:1四边形GCEF与四边形GCEF具有怎样的对称性? 2怎样运用像与原像对应点的坐标关系,画出以原点为位似中心的位似图形?以坐标原点为位似中心的位似变换有一下性质: 若原图形上点的坐标为(x,y),像与原图形的位似比为k,则像上的对应点的坐标为(kx,ky)或(kx,ky). 练一练:1.如图,已知ABC和点O.以O为位似中心,求作ABC的位似图形,并把ABC的边长缩小到原来的一半. 2.如图,在直角坐标系中,ABC的各个坐标为A(-1,1),B(2,3),C(0,3)。现要以坐标原点0为位似中心,位似比为,作ABC的位似图形A/B/C/,则它的顶点A、B、C的坐标各是多少?三、小结内容,自我反馈 今天你学会了什么?位似图形的定义,位似图形的性质.四、作业 1P65习题27.3 1、2、3收集于网络,如有侵权请联系管理员删除