1、1 定积分的概念第一课时一、教学目标:理解求曲边图形面积的过程:分割、以直代曲、靠近,感受在其过程中渗透的思想方法。二、教学重难点:重点:把握过程步骤:分割、以直代曲、求和、靠近(取极限)难点:对过程中所包含的基本的微积分 “以直代曲”的思想的理解三、教学方法:探析归纳,讲练结合四、教学过程1、创设情景我们学过如何求正方形、长方形、三角形等的面积,这些图形都是由直线段围成的。那么,如何求曲线围成的平面图形的面积呢?这就是定积分要解决的问题。定积分在科学争辩和实际生活中都有格外广泛的应用。本节我们将学习定积分的基本概念以及定积分的简洁应用,初步体会定积分的思想及其应用价值。一个概念:假如函数在某
2、一区间上的图像是一条连续不断的曲线,那么就把函数称为区间上的连续函数(不加说明,下面争辩的都是连续函数)2、新课探析问题:如图,阴影部分类似于一个梯形,但有一边是曲线的一段,我们把由直线和曲线所围成的图形称为曲边梯形如何计算这个曲边梯形的面积? 例题:求图中阴影部分是由抛物线,直线以及轴所围成的平面图形的面积S。思考:(1)曲边梯形与“直边图形”的区分?(2)能否将求这个曲边梯形面积S的问题转化为求“直边图形”面积的问题?分析:曲边梯形与“直边图形”的主要区分:曲边梯形有一边是曲线段,“直边图形”的全部边都是直线段“以直代曲”的思想的应用xxx1 x1 xy1 xyy把区间分成很多个小区间,进
3、而把区边梯形拆为一些小曲边梯形,对每个小曲边梯形“以直代取”,即用矩形的面积近似代替小曲边梯形的面积,得到每个小曲边梯形面积的近似值,对这些近似值求和,就得到曲边梯形面积的近似值分割越细,面积的近似值就越精确。当分割无限变细时,这个近似值就无限靠近所求曲边梯形的面积S也即:用划归为计算矩形面积和靠近的思想方法求出曲边梯形的面积解:(1)分割在区间上等间隔地插入个点,将区间等分成个小区间:, 记第个区间为,其长度为分别过上述个分点作轴的垂线,从而得到个小曲边梯形,他们的面积分别记作: ,明显,(2)近似代替记,如图所示,当很大,即很小时,在区间上,可以认为函数的值变化很小,近似的等于一个常数,不
4、妨认为它近似的等于左端点处的函数值,从图形上看,就是用平行于轴的直线段近似的代替小曲边梯形的曲边(如图)这样,在区间上,用小矩形的面积近似的代替,即在局部范围内“以直代取”,则有 (3)求和:由,上图中阴影部分的面积为=,从而得到的近似值 (4)取极限:分别将区间等分8,16,20,等份(如图),可以看到,当趋向于无穷大时,即趋向于0时,趋向于,从而有从数值上的变化趋势 3求曲边梯形面积的四个步骤:第一步:分割在区间中任意插入各分点,将它们等分成个小区间,区间的长度,其次步:近似代替,“以直代取”。用矩形的面积近似代替小曲边梯形的面积,求出每个小曲边梯形面积的近似值第三步:求和第四步:取极限。说明:1归纳以上步骤,其流程图表示为:分割以直代曲求和靠近2最终所得曲边形的面积不是近似值,而是真实值四、课堂小结:求曲边梯形的思想和步骤:分割以直代曲求和靠近 (“以直代曲”的思想)五、教学后记