收藏 分销(赏)

高中数学(北师大版)选修2-2教案:第1章-分析法和综合法在生活中的运用.docx

上传人:天**** 文档编号:3824364 上传时间:2024-07-21 格式:DOCX 页数:1 大小:53.11KB
下载 相关 举报
高中数学(北师大版)选修2-2教案:第1章-分析法和综合法在生活中的运用.docx_第1页
第1页 / 共1页
亲,该文档总共1页,全部预览完了,如果喜欢就下载吧!
资源描述

1、分析法和综合法在生活中的运用所谓综合法,是指“由因导果”的思想方法,即从已知条件或某些已经证明过的结论动身,不断地开放思考,去探究结论的方法所谓分析法,是指“执果索因”的思想方法,即从结论动身,不断地去查找须知,直至达到已知事实为止的方法例1:某公司一年购买某种货物400吨,每次都购买吨,运费为4万元/次,一年的总存储费用为万元,试证明当时一年的总运费与总存储费用之和最小。(综合法)证明:由题意得总费用,由均值不等式有:当且仅当即时取“”)故当时一年的总运费与总存储费用之和最小。评述:本题考查了不等式在实际生活中的应用,考查了均值不等式等号成立的条件.运用的方法是综合法,从已知条件动身,不断地

2、开放思考,去探究结论例2:某种商品原来定价每件p元,每月将卖出n件,假如定价上涨x成(这里x成即,0x10.每月卖出数量将削减y成,而售货金额变成原来的 z倍.(1)设y=ax,其中a是满足a1的常数,用a来表示当售货金额最大时的x的值;(2)若y=x,求使售货金额比原来有所增加的x的取值范围.(分析法) 解:(1)由题意知某商品定价上涨x成时,上涨后的定价、每月卖出数量、每月售货金额分别是:p(1+)元、n(1)元、npz元,因而,在y=ax的条件下,z=ax2+100+.由于a1,则010.要使售货金额最大,即使z值最大,此时x=.(此处用分析法)(2)由z= (10+x)(10x)1,解得0x5.评述:本题考查综合应用所学数学学问、思想和方法解决实际问题的力气,考查函数关系、不等式性质、最大值、最小值等基础学问,考查利用均值不等式求最值的方法、阅读理解力气、建模力气.函数定义域通常都是解不等式得到,利用不等式方法可以求出函数值的取值范围.如在实际问题应用中,主要有构造不等式求解或构造函数求函数的最值等方法,本题利用最值这个“结果”去索“等号成立的条件”这个因,避开了不必要的错误.

展开阅读全文
部分上传会员的收益排行 01、路***(¥15400+),02、曲****(¥15300+),
03、wei****016(¥13200+),04、大***流(¥12600+),
05、Fis****915(¥4200+),06、h****i(¥4100+),
07、Q**(¥3400+),08、自******点(¥2400+),
09、h*****x(¥1400+),10、c****e(¥1100+),
11、be*****ha(¥800+),12、13********8(¥800+)。
相似文档                                   自信AI助手自信AI助手
搜索标签

当前位置:首页 > 教育专区 > 高中数学

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服